
POTS

- · Circuit Switched
 - · Connection oriented, deterministic
 - · Designed for voice
 - · Local loop (last mile) mostly still analogue
 - · Exchanges/Trunks digital
- · Local loop
 - Voltage modulated by voice over imposed narrow frequency range within 0-4kHz band (300-3400 Hz)
 - · Narrowband telephony
 - Human ear 20-20kHz
 - Wideband Telephony initiatives 6-7 KHz
 - Aimed at VoIP market

Dr. Hugh Melvin, Dept. of Information Technology, NUI,G

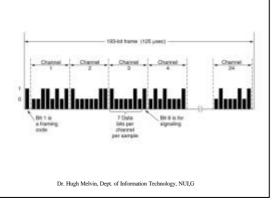
POTS Basics

Exchange

- \bullet Signal sampled 8000/sec ... every 125 usec
 - no point in sampling any faster as frequencies limited by LPF (Low Pass Filter)
- PCM (Pulse Code Modulation)
 - different types
- Simplest
 - Each sample converted into an 8-bit number
 - US T1: 7 + 1 data/signal
 - CCITT E1: 8 data bits
 - Quantisation error (ADC) limits fidelity
 - 8000 samples/sec * 8 bit/sample = 64 kbps

Multiplexing

- Frequency Division Multiplexing FDM
 - Frequency bands allocated to different users
 - Potential wasted bandwidth
 - Radio Stations
 - Eg. 88.2MHz, 100.6 MHz
 - GSM: Each call utilises narrow freq band
- · Time Division Multiplexing TDM
 - Full bandwidth allocated to each user for certain timeslots
 - Share b/w using time slots
 - GSM: Users share limited capacity
 - · 'network busy'


Dr. Hugh Melvin, Dept. of Information Technology, NUI,G

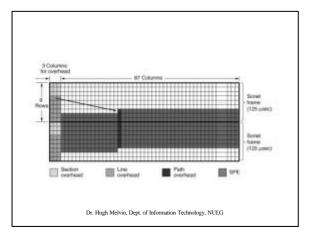
POTS

Trunks

- ITU-T E1 frame
 - Consists of 32 8-bit samples from 32 channels
 - 30 data plus 2 for signalling.
 - 32 x 64 kbps = 2.048 Mbps
- US T1 frame
 - Consists of 24 8-bit samples from 24 channels + 1 framing bit
 - 7 bit plus 1 bit signalling per channel
 - 24 * 64 kbps + 8 kbps framing = 1.544 Mbps

E	1-fran	10			
	30	voice char	nnels+2 control ch	annels	
	ļ		– 125 μs ––––		
	CH CH	CH 2	CH 16	CH 31	
syn	frame chronizatio	m	signaling channel		
			- Continue		

POTS


- E1 carriers multiplexed (TDM)
 - Successively higher bandwidth carriers
 - E2: 128 channels (120+8)...8.848 Mbps
 - E3: 512 channels (480+32) ..34.304 Mbps
 - E4: 2048 channels (1920+128)... 139.264 Mbps
 - Etc.. SONET/SDH
- T1 → T4
 - Different ratios

Dr. Hugh Melvin, Dept. of Information Technology, NUI,G

SDH/SONET

- Synchronous Digital Hierarchy
 ITU-T
- Synchronous Optical NETwork
 USA/Canada
- Similar Technology:Aims
 - Global hi-speed data transmission
 - · Compatibility
 - Future standard for data transmission
- · Basic SONET frame
 - 810 bytes every 125 usec = 51.84 Mbps
 - Data plus signalling overhead

-		

SONET		SONET SDH		Data rate (Mbps)		
Electrical	Optical	Optical	Gross	SPE	User	
STS-1	OC-1		51.84	50.112	49.536	
STS-3	OC-3	STM-1	155.52	150.336	148.608	
STS-9	OC-9	STM-3	466.56	451.008	445.824	
STS-12	OC-12	STM-4	622.08	601.344	594.432	
STS-18	OC-18	STM-6	933.12	902.016	891.648	
STS-24	OC-24	STM-8	1244.16	1202.688	1188.864	
STS-36	OC-36	STM-12	1866.24	1804.032	1783.296	
STS-48	OC-48	STM-16	2488.32	2405.376	2377.728	
STS-192	OC-192	STM-64	9953.28	9621.504	9510.912	

Dr. Hugh Melvin, Dept. of Information Technology, NUI,G

POTS Operation

- Time Division Switches
 - Replaced the mechanical Crossbar switch
 - Basis of Modern Exchange
 - Mapping table details current circuits
 - Input Lines → Input frame
 - Input frame → RAM memory
 - RAM → Output frame based on mapping table
 - Output frame → Output lines
 - Effect of Software Glitches
 - Telecomunications Failure

-	

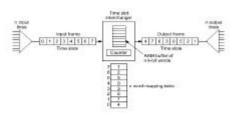
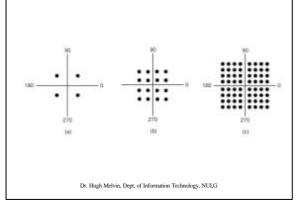


Fig. 2-40. A time division switch.

Dr. Hugh Melvin, Dept. of Information Technology, NUI,G

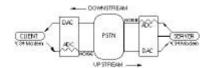
Data Transmission over POTS


- · Classified by:
 - Distance & Required datarate
- Solutions
 - LAN
 - Local & hi datarate
 - WAI
 - Remote & hi datarate Leased/Installed lines
 - Modem (POTS)
 - · Remote & low datarate
 - ISDN / ADSL (POTS)
 - Remote & moderate datarate

Dr. Hugh Melvin, Dept. of Information Technology, NUI,G

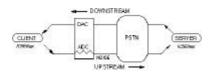
Modems

- Basic operation
 - Carrier signal (0- 4kHz band)
 - · Limited by narrowband technology
 - Modulation Type (freq/ ampl/ phase)
 - latter 2 mostly
 - Recall Nyquist...no of levels per baud
 - 2 → bit rate = baud rate
 - 4 → 2 bits per baud → 4800 bps : QPSK (4 phase shifts)
 - 8 → 3 bits per baud → 7200 bps
 - 16 → 4 bits per baud → 9600 bps : QAM-16
 - 64 → 6 bits per baud → 14,400 bps: QAM-64



Modems

- QAM –16 (Quadrature Amplitude Modulation)
 - 9600 bps
 - Amplitude and phase modulation
 - · At high bps, noise level critical
 - · Error correction/compression features
- Datarate limited due to
 - · Distance / wire quality
 - Noise
 - Shannon.. Rate = Hlog₂(1+S/N)
 - Typically 30 kbps for conventional line
 - 2 x ADC quantisation
- V.90: 56 k modems


Dr. Hugh Melvin, Dept. of Information Technology, NUI,G

Conventional Modems

- ADC/DAC at both ends
- Quantisation noise at both ends (ADC)
- Limit to speed V.34 28.8 kbps typically

K56

- · ISP connected digitally
- · No ADC required at ISP end
- · Less noise..faster speeds possible

Dr. Hugh Melvin, Dept. of Information Technology, NUI,G

Higher Bandwidth POTS solutions

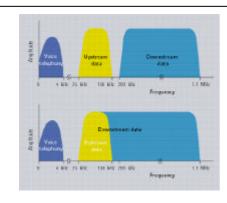
- ADSL
- ISDN
 - ..also known as N-ISDN

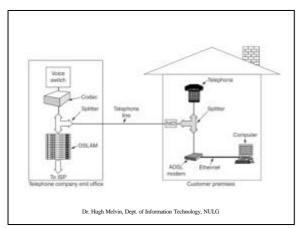
Dr. Hugh Melvin, Dept. of Information Technology, NUI,G

Asymmetric Digital Subscriber Line

- Hi Speed
- xDSL: Family of DSL systems
- Local Loop
 - Twisted pair capable of 1MHz bandwidth
 5 km limit typically
- Asymmetric
 - High Speed Downlink
 - 512 kbps 1.5 Mbps -9Mbps
 - Uplink:
 - 64 to 640 kbps
 - Suited to WWW applications
 - · Simultaneous phone access

-	
-	
•	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
_	


Category 3 UTP Characteristics Dr. Hugh Melvin, Dept of Information Technology, NUI.G


ADSL Operation

- Uses FDM
 - 0-25 kHz Voice
 - 4-25 kHz separation buffer
 - 25 1 MHz Data
 - 25 200 kHz Uplink
 - 250 kHz 1MHz Downlink
 - Echo cancellation allows overlap of Uplink/Downlink spectrum
 - · Splitter used to separate voice/ data at both ends
 - Digital Subscriber Line Access Multiplexer (DSLAM)
 - Reconstructs data stream to ISP
- See www.adslguide.org.uk

_			
_			
_			
_			
_			
_			
_			
_			
_			
-			
_			

Dr. Hugh Melvin, Dept. of Information Technology, NUI,G

Integrated Services Digital Network

- Multiplexing of services
 - Realtime & Non-realtime
- Digital bit-pipe.
- · Various rates
 - Basic
 - 2B + 1D (tw pair)
 - Simultaneous voice and data service
 - Primary
 - 30B + 1D (1984 kbps) → fits into E1 carrier.
 - B = 64 kbps PCM channel for voice/data
 - D = 16 kbps channel for signalling
 - H = 1920 kbps

-	

ISDN Tigere 1. Braple ISDN has buy Public Syst-bed Relations Hallocke Hall

- Basic rate 2B + 1D (Small business/Home user)
- TA..connects devices(Comp/Fax/Phone)
- Still commonly used
 Dr. Hugh Melvin, Dept. of Information Technology, NUI,G