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Abstract—This paper examines the impact of changes in
dimensionality on a multi-layered genotype-phenotype mapped
GA. To gain an understanding of the impact we carry out a
series of experiments on a number of well understood problems
and compare the performance of a simple GA (SGA) to that of a
multi-layered GA (MGA) to demonstrate their ability to search
landscapes with varying degrees of difficulty due to changes in
the dimensionality of each function. The paper also examines
the impact of diversity maintenance in assisting the search and
identifies the natural increase in diversity as the level of problem
difficulty increases, as a result of the layered Genotype-Phenotype
mapping. Initial results indicate that it may be advantageous
to include a multi-layered genotype-phenotype mapping under
certain circumstances.

I. INTRODUCTION

Genetic Algorithms (GAs) [1], [2], are search algorithms
based on the Darwinian principal of the survival of the
fittest. An initial population of individuals is created, each
representing a possible solution to a given problem. The
individuals in the population are allocated a fitness score based
on their suitability in the environment in which they exist. The
individuals are then subjected to environmental pressure and
based on their fitness scores, with the propagation of fitter
individuals through natural selection. However, Sewall Wright
noticed that many random changes in the frequency of alleles
occurring in a population were not related to selection [3]. His
observations indicated that this genetic drift was an important
component in the evolutionary process. Neutral theory, as
proposed by Kimura [4] offered an alternative to the Darwinian
view, states that the mutations involved in the evolutionary
process are neither advantageous nor disadvantageous to the
survival of an individual, and that most mutations are caused
not by selection but rather by random genetic drift. However,
Kimura pointed out that although natural selection does play a
role in adaptive evolution, only a tiny fraction of DNA changes
are adaptive. The vast bulk of mutations are phenotypically
silent [5].

By adopting the ideas of Darwinism, simple genetic algo-
rithms (SGAs) can be viewed as implementing the process of
evolution without containing any explicit neutral mutations. In

other words, mutations are either an advantage or a disadvan-
tage to the individual in terms of fitness, with selection then
propagating the fitter individuals. As the search progresses
exploration and exploitation ratios decrease as the population
converges. If we are to implement a genetic algorithm (GA)
based on the principles of neutral theory then neutrality needs
to be introduced. Neutrality can be viewed as a situation
where a number of different genotypes can represent the same
phenotype.

The methodology used to examine the impact of neutrality
is as follows: we ran a number of experiments over the Sphere
Model function and a Sphere Model function which incorpo-
rates a changing environment. These problems were chosen
as they allow us to examine the efficiency of both the SGA
and the MGA over the Sphere Model and then to compare
their performance when a changing environment is included.
To examine how the GAs perform over varying levels of
difficulty we alter the number of dimensions associated with
each of the problems. In this paper the authors examine the
impact of changes in dimensionality of a landscape has on
a GA’s ability to optimize a problem. We also examine how
the maintenance of population diversity can impact on a GA’s
ability to solve a problem and how the inclusion of neutrality
assists in maintaining this diversity in a natural way, without
having to keep track of the population dynamics. Finally, we
used a two sided paired Wilcoxon test to analyse the results.
The paper is laid out as follows: Section II describes the
background and outlines the motivation for conducting this
study. Section III gives an overview of the multi-layered GA
(MGA), while Section IV examines the test suite used in the
experiments. Section V outlines the experimental results and
finally we conclude and outline possible future work in Section
VI.

II. BACKGROUND

In GAs an object which forms a solution to a particular
function can be referred to as a phenotype and a phenotype’s
encoding within a GA is known at the genotype [6]. Both
the genotype and the phenotype have their own space, which



can differ significantly. The fitness landscape for a genetic
algorithm can be viewed as the visualisation of the relationship
which exists between the variation operators, the candidate so-
lutions (elements of the function’s domain) and their objective
or fitness values [7].

The motivation for the research described in this paper,
is to gain an understanding of the relationship (if any),
which exists between the level of difficulty associated with
a problem and the presence within the GP-map of a level of
neutrality. In order to analyse this we have selected a unimodal
problem and a changing landscape problem as part of our test
suite. In order to create an experimental environment which
allows us to alter the levels of difficulty associated with each
problem, we will examine the impact of changing the level
of dimensionality associated with each of the problems. By
adopting this approach as our methodology we can run a
number of experiments with varying level of dimensionality,
which alter the levels of difficulty. We have chosen to use 3,
15 and 30 as the number of dimensions in order to create low,
medium and high levels of dimensionality.

The contribution of this paper is to implement a basic
interpretation of the biological concepts of transcription and
translation into the GP-map of a GA in order to introduce
neutrality and to use an interpretation of a missense mutation
operator in one of the GP-mapping layers, which reflects back
onto the genotype. The objective of the research is to use this
mechanism to naturally maintain a level of diversity within the
population without having to examine the ongoing population
dynamics. The paper examines how the diversity maintained
in the population through the use of the GP-mapping impacts
on the search over problem landscapes of different levels of
difficulty.

A. Neutrality

Neutrality can be defined as a situation where following
a mutation one genotype changes to another genotype, but
both genotypes represent the same phenotype [4]. This implies
that as neutrality is introduced, the solution space increases
without increasing the genotype space. Neutral representations
have appeared in a number of GAs over the past number
of years. As a general rule, the introduction of neutrality
into GAs can be divided into two categories. Firstly, fitness
landscapes which introduce neutrality i.e. Kauffman’s NK
landscape [8], Barnett’s NKp landscape [9], Newman and
Engelhardt’s NKq landscape [10]; and Beaudoin et al.’s ND
landscape [11]. The second category, which is the focus of
this paper, is the introduction of neutrality through genotype-
phenotype mappings (GP-map). With this approach, neutrality
is obtained implicitly rather than explicitly. Shipman [12]
found neutrality to be advantageous where neutral networks
(introduced by Harvey and Thompson [13] - meaning points
in a search space of equal fitness), are distributed over the
search space with a high degree of connectivity between them.
Shaklton [14] and Shipman [15] showed that neutrality could
be introduced through the use of GP-maps. Their approach
of using mappings was extended by Ebner et al. [16], [17]

and outlined how high levels of mutation could be sustained
by having neutral networks present. They also identified that
neutral networks assist in maintaining diversity in the popula-
tion, which may be advantageous in a changing environment.

B. Diversity

Premature convergence is often cited as a problem for GAs;
it occurs when the population reaches a sub-optimal point
and the genetic operators can no longer create offspring with
higher fitness levels than their parents. This is caused by a
loss of diversity in the population [18] [19]. As described
by Whitley [20] and Banzhaf, [21] in order to continue to
explore regions of the search space you need to maintain
diversity in the population. Many methods have been pro-
posed to maintain diversity in the population Grefenstette
introduced a “partial hypermutation” step which was used
to replace a percentage of the population (“the replacement
rate”) with randomly generated individuals. The purpose of
this was to maintain enough diversity in the population to
allow exploration of the search space [22] . He found this to be
quite useful in changing environments. Cobb and Grefenstete
used “Random Immigrants” to replace part of the population
in each generation and also an adaptive approach called
“Triggered Hypermutation” which increased mutation when
decrease in the performance of the GA was detected. The
results indicated that “diversity represented a natural source
of power in adopting to changing environments” [23] . Again
this was used in conjunction with a changing environment and
advantages and disadvantages were detected. For a standard
GA, high mutation rates were useful for tracking performance
that changed continuously, when looking at the offline perfor-
mance. However, online performance deteriorated when high
rates of mutation (0.10) were present. With the Triggered
Hypermutation approach, as it is adaptive, the level of diversity
was increased when needed but it didn’t perform well in
abruptly changing environments. The Random Immigrants
operated quite well when the environment was changing, but
there was an overhead when the environment was stationary
[23]. A micro-GA was proposed by Krishnakumar [24] which
attempted to increase diversity in the population to compensate
for a change detected in the environment. But the populations
were small and converged quickly so constant replacement of
the population was required. Bickle and Thiel defined loss of
diversity to be the proportion of individuals of a population
that are not selected during the selection phase. They examined
fitness distributions to gain a better understanding of selection
schemes and carried out a comparison of various selection
schemes [25] . Motoki [26] found some results differed with
that of Bickle and Thiel, although they both agreed that loss
of diversity is fundamentally related to selection pressure
and the arrangement of genes before selection. Motoki found
tournament, and exponential ranking schemes are roughly
equivalent and that with linear ranking selection the speed of
evolution will only vary slightly.

When examining diversity with a SGA, genotypic and
phenotypic diversity can be viewed as one and the same.



However, with the MGA, due to the nature of the GP-map,
genotypic and phenotypic diversity are viewed in isolation as
there exists a many-to-one relationship between the genotype
and the phenotype. In this paper we measure both genotypic
diversity (G) and phenotypic diversity (P ) because of the
many-to-one mapping which exists between G and P for
the MGA. We calculate G and P using Hamming Average
as outlined in [27]. In theory the dynamics of the MGA
population should be quite different to that of the SGA because
of the relationship between G and P . With a traditional GA
the initial hamming distance (h) is l/2 and moves towards
h = 0 [27]; the MGA may differ in diversity at G level.

III. MULTI-LAYERED GP-MAP

The primary inspiration for the multi-layered GA can
be found in the biological processes of transcription and
translation. At a very basic level, the biological process
of transcription involves the copying of information stored
in DNA into an RNA molecule, which is complementary
to one strand of the DNA. The process of translation then
converts the RNA, using a predefined translation table,
to manufacture proteins by joining amino acids. These
proteins can be viewed as a manifestation of the genetic code
contained within DNA and act as organic catalysts in anatomy.

The multi-layered GA (see Figure 1) includes a layered
genotype-phenotype map which adopts a basic interpretation
of the transcription and translation processes and allows for
a basic implementation of a missense mutation operator.
The genotype consists of “1”s and “0”s and the first stage
of transcription is to convert the genotype into a string of
characters from the alphabet A, C, G, and T (which attempts
to represent the biological concept of a template strand). To
achieve this we use the following mappings; “00” represents
A, “01” represents C, “10” represents G and “11” represents
T . Following this we create an interpretation of a coding
strand where A → T , C → G, G → C and T → A. The
final phase of the transcription stage maps T → U , G → G,
C → C and A → A and creates an RNA sequence. The
translation stage compares the RNA sequence to a translation
table which is randomly generated at initialisation to create
a mapping from the RNA sequence into a series of basic
interpretations of amino acids, called phenes, which are then
combined to create the phenotype.

By including a basic interpretation of transcription and
translation into the genotype-phenotype mapping we introduce
neutrality, which allows for a many-to-one relationship be-
tween the genotype and the phenotype. The missense mutation
operator is interpreted and implemented as follows. Once the
processe of transcription has taken place, missense mutation
occurs at a given rate of probability. If a missense mutation
takes place then one of the RNA bases, is flipped to another
and the translation stage is carried out. It should be noted that
unlike traditional point mutation operators, the probability of a
missense mutation taking place is on each single codon, which

in this case is a collection of four characters. Following this
the translation phase takes place. For a more detailed overview
of the MGA see [28].
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Fig. 1: Overview of Multi-layered GA (MGA)

IV. TEST SUITE

In this paper we compare the performance of a SGA and
a MGA over a number of well known problems. In order
to allow for a comparable performance we have used the
following values for each of the experiments; crossover rate
Pc = 0.70, mutation Rate Pm = 1/l, where l is the length of
the chromosome. We also use a tournament selection scheme
with a tournament size of 4. Each of the experiments has a
population size of 400 and the Sphere Model experiments run
for 2000 generations, the changing environment experiments
run for 4000. Th3 probability of missense mutation Pmm was
set to 0.03, this figure was chosen as being suitable, having
carried out a number of trial runs to briefly examine its impact
and kept constant throughout the search.

A. Sphere Model [29]

The Sphere Model [29] is relatively easy to optimise as it is
continuous, convex and unimodal. This function is normally
used to measure the efficiency of a particular algorithm. For
this paper the authors altered the number of dimensions (n)
associated with the Sphere Model in order to vary the level
of difficulty and to examine the impact of dimensionality on
the algorithms. Experiments on the Sphere Model were carried
out with n = 3, n = 15 and n = 30. The details of the Sphere
Model are as follows;

f1(~x) =
2∑

i=1

x2
i

Limits− 5.12 ≤ xi ≤ 5.11

min(f1) = f1(0, . . . , 0) = 0



B. Sphere model, changing environment [30]

The changing environment experiments have at its heart the
sphear model as outlined in [29], however the idea is to allow
the GAs to search the landscape defined by the sphere model
and to then change the function values after 1500 generations,
so that the landscape also changes. The aim of this set of
experiments is to examine how both the SGA and MGA cope
in a changing landscape environment with the dimensionality
again being, n = 3, n = 15 and n = 30. The details of the
Sphere Model Changing Environment are as follows;

f2( ~x(t)) =
{ ∑n

i=1 x2
i (t) : t mod a even∑n

i=1(xi − b)2 : t mod a odd

−5.12 ≤ xi ≤ 5.11

a = 1500 generations ; b = 4

min(f2) =
{

f2(0, . . . , 0) : t mod a even
f2(b, . . . , b) : t mod a odd

}
= 0

V. EXPERIMENT FINDINGS

A. Sphere model experiments

The first experiment was carried out using the Sphere
Model and the results of the experiments are outlined in Table
I. The table illustrates the percentage of times the global
optimum is located and the average number of runs required
to locate the global optimum, averaged over the number of
successful runs over the varying levels of dimensions. The
figures appear to indicate that the number of dimensions
contained in the problem has an impact on the performance
of the algorithms over the Sphere Model function.

When the number of dimensions n is set to 3 the problem
is extremely easy for the SGA and the MGA, with both
achieving 100% success in locating the global optimum. The
SGA locates the optimum on average after only 5 generations
and the MGA takes on average 22 generations. One possible
reason for this is that an adequate level of diversity in the
population exists early in the search and that due to the relative
ease of the problem with n = 3, the SGA on average, locates
the global before the MGA. The level of diversity in the
population for both the SGA and the MGA is shown in Figure
2. It should be noted that G and P for the SGA are one
and the same, whereas G and P for the MGA differ due to
the nature of the GP-map, and this is shown where G for
the MGA differs significantly from P . Also keeping track of
the off-line (average best) performance and on-line (average)
performance is useful as an indicator of whether the balance
between exploration and exploitation is being maintained. The
recorded off-line and on-line performances of the SGA and the
MGA were quite similar as the low degree of dimensionality
meant that the problem was relatively easy for both GAs and
the global optimum was located very quickly.

F1 - Sphere Model Experiments

Number of Dimensions n = 3

GA Description SGA MGA

Optimum Located 100% 100%

Avg. No. Generations Required 5 22

Number of Dimensions n = 15

GA Description SGA MGA

Optimum Located 100% 100%

Avg. No. Generations Required 1014 359

Number of Dimensions n = 30

GA Description SGA MGA

Optimum Located 80% 100%

Avg. No. Generations Required 1681 1007

TABLE I: F1: Sphere Model Experiments
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Fig. 2: Sphere Model Population Diversity n = 3 - SGA &
MGA

When the number of dimensions increases to n = 15,
the level of difficulty increases for both GAs, as shown in
Table I. The level of difficulty can be seen in the average
number of generations taken to locate the global optimum. In
this experiment, both the GAs obtained a 100% success rate.
However, the SGA needed an average of 1014, while the MGA
needed an average of 359 generations, illustrating that the
increase in dimensionality has increased the level of difficulty
for both GAs, but the effect has been more pronounced for
the SGA. This may be due to the lack of diversity within
the population as illustrated outlined in Figure 3. When we
examine Figure 3 we can see that the population for the
SGA converges quite early in the search and this may account
for the average number of generations required to locate the
global optimum as the level of difficulty has increased due



to the increase in the number of dimensions, but the level
of diversity within the population decreases as the search
progresses through the generations. We also noted that as the
level of difficulty increases, so too does G for the MGA, this
illustrates the natural introduction of diversity as difficulty is
increased. With regard to the off-line and on-line performance
of both the SGA and the MGA they were relatively similar
when n = 15 and that the balance between exploration and
exploitation is maintained.
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Fig. 3: Sphere Model Population Diversity n = 15 - SGA &
MGA

In the final Sphere Model experiment, the number of
dimensions were increased to n = 30. The effect of this can
be seen in Table I and Figure 4. This increase in the number
of dimensions has had a significant impact on both of the
GAs, but again the SGA’s performance shows the largest drop
in performance. The SGA only succeeded in locating the
global optimum 80% of the time, while the MGA continues
with a 100% success rate. The other interesting result here
can be found in the average number of generations required
to locate the optimum, with the SGA requiring, on average
1681 generations while the MGA needed, on average, 1007
generations. This is a significant improvement in performance
on the part of the MGA when compared to that of the SGA.
The results indicate that the search of a landscape with
increased dimensionality has increased, may be assisted by
maintaining an element of diversity in the population.

Figure 4 may indicate that this improvement in performance
is due to the implicit level of diversity being maintained in
the population of the MGA. The Figure illustrates that for the
SGA, diversity decreases relatively quickly. With the MGA
although the level of P diminishes, G is significantly higher
for the MGA. This implicitly-maintained diversity is a direct
result of the GP-map and the many-to-one relationship which
exists between the genotype and the phenotype in the MGA.

B. Sphere model, changing environment experiments
The second set of experiments were carried out in a

changing environment with the results outlined in Table II.
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Fig. 4: Sphere Model Population Diversity n = 30 - SGA &
MGA

We can see that when the dimension level n is set to 3,
the problem landscape is relatively easy for both the SGA
and the MGA, with both algorithms succeeding 100% of the
time. However, the MGA discovers the global optimum in the
changing landscape in an average of 1548 generations which
is a significant improvement in performance over the SGA,
with an average of 2522 generations. Figure 5 illustrates the
population diversity for both the SGA and the MGA where
n = 3. The diversity within the population is relatively similar
to that of the first Sphere Model experiment where n = 3,
but main difference is that when the environment changes the
diversity in the population also changes as both algorithms
attempt to locate the new global optimum.

F2 - Sphere Model Changing Environment Experiments

Number of Dimensions n = 3

GA Description SGA MGA

Optimum Located 100% 100%

Avg. No. Generations Required 2522 1543

Number of Dimensions n = 15

GA Description SGA MGA

Optimum Located 20% 100%

Avg. No. Generations Required 2939 2182

Number of Dimensions n = 30

GA Description SGA MGA

Optimum Located 0% 100%

Avg. No. Generations Required N/A 3557

TABLE II: F2: Sphere Model Changing Environment Experi-
ments
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The impact of the changing environment becomes notice-
able when we examine the on-line and off-line performance
of the SGA in Figure 6. Although we saw that the SGA had
little or no difficulty solving the Sphere Model problem when
n = 3, it is apparent that the change in the environment
has had little effect the on-line results of both the SGA and
the MGA 7, this may be because of the relative ease of the
problem.
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In the second set of changing landscapes experiments we
set the number of dimensions to n = 15. We can see from
Table II, that the SGA is finding it difficult to cope with
the changing environment when problem difficulty increases
due to the increase in the level of dimensionality. The SGA
only manages to succeed in locating the global optimum 20%
of the time and when it did locate it the average number of
generations required was 2939. The MGA, on the other hand,
was able to locate the global optimum 100% of the time and
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Fig. 7: Sphere Model Changing Environment Online & Offline
Performance n = 3 - MGA

the average number of generations required was 2182. Again
the population diversity as illustrated in Figure 8, contains a
similar pattern to that of the Sphere Model experiment where
n = 15. The trend of the difference between the G and P
increasing as difficulty increases continues and the change in
diversity is magnified as the dimensionality has increased from
3 to 15.
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Fig. 8: Sphere Model Changing Environment Population Di-
versity n = 15 - SGA & MGA

As the number of dimensions increase, the impact on the
on-line and off-line values for both of the SGA and the MGA
is significant (Figures 9 and 10 respectively). These results
illustrate that at the beginning of the search both the on-
line and off-line performance for the SGA and MGA are
quite similar, but once the environment changes the result
on the on-line performance are more noticeable. The on-
line fitness level of the MGA falls below that of the SGA,
but it still maintains the ability to search the space more
effectively that the SGA. As the parameters are held constant



the only difference between the performance before the change
at generation 1500 and the rest of the search is the greater
presence of diversity in the population of the MGA due to
neutrality in the GA-map.
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Fig. 9: Sphere Model Changing Environment Online & Offline
Performance n = 15 - SGA
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Fig. 10: Sphere Model Changing Environment Online &
Offline Performance n = 15 - MGA

For the final changing environment experiment the level
of dimensionality n was increased to 30. As this increased
the level of difficulty we can see that the SGA was unable to
locate the global optimum. The MGA, however, did locate
the new global optimum 100% of the time, with an average
number of generations of 3189 required (see Table II). When
we examine the population diversity shown in Figure 11 we
can see a similar pattern to the previous experiments, with
the additional feature of the time required for the population
diversity to revert back to normal levels after the landscape
changing, increasing due to the increase in dimensionality.
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For both the SGA (see Figure 12) and the MGA (see 13) the
impact of the change in the environment when dimensionality
is set to 30 is interesting. The off-line performance for both
GAs appears to almost recover to where it was before the
change in the environment. However, the impact on the on-
line performance has been so severe that the figures have fallen
into negative values for both GAs, with the SGA failing to
locate the global optimum.
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Fig. 12: Sphere Model Changing Environment Online &
Offline Performance n = 30 - SGA

C. Statistical Analysis

A two sided paired Wilcoxon test was carried out on the
results of each experiments to access whether the population
means differ. The results were shown to be statistically signif-
icant with a P value of P < 2.2e− 16.

VI. CONCLUSION & FUTURE WORK

The experiment we conducted in order to determine if a
relationship existed between the level of difficulty within a
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Fig. 13: Sphere Model Changing Environment Online &
Offline Performance n = 30 - MGA

problem and the presence within the GP-map of a level of
neutrality. The results appear to indicate that the presence
of a degree of neutrality within the GP-map maintains a
level of diversity within the population and that this diversity
can assist in searching the landscape of particular problems.
Overall, the results concur with previous research showing
the neutrality appears to be beneficial particularly in changing
environments. However, what the MGA offers is a novel way
to maintain, in a natural way, a level of diversity within the
population through the many-to-one mapping between the
genotype and the phenotype. Which was illustrated where
the difference between G and P increased as the level of
difficulty increased. This approach may be useful as there is
no requirement to monitor the population dynamics and the
readjust the parameter settings.

Future work includes the following:
• Additional experiments on an expanded test suite.
• Further analysis of the use of operators in the various

layers of the GP-map.
• Comparison of the MGA to other diversity maintaining

methods.
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