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Abstract—This paper explores the robustness of cooperation
in a spatially organised population of agents participating in the
N-player prisoner’s dilemma. The agents are placed on graphs
exhibiting different properties and the relationship between these
properties and the robustness of cooperation is explained. In
particular, this paper analyses the effect the clustering coefficient
and the average node degree has on cooperation. In addition to
theoretical analysis, rigorous experiments, involving the creation
of graphs exhibiting certain desirable properties, are undertaken
to explore the effect of the graph properties on the ability
of cooperation to resist invasion. Both the theoretical and the
experimental results show that when the average degree is high,
the population loses the ability to maintain cooperation in the
presence of defectors. However, for graphs with lower average
node degree, a higher clustering coefficient will guarantee a
relatively high cooperation rate.

Keywords—Evolutionary game, Prisoner’s Dilemma, Coopera-
tion

I. INTRODUCTION

The graph topology governing the structure of a population
of agents can influence the emergence of cooperation in
evolutionary games [1], [2], [3], [4]. Previous research on
different graph topologies has shown that the type of topology
may exert different levels of influence on the evolutionary
dynamics of the population; research has included exploring
lattice grids [5], [6], [7], [8], [9], Newman-Watts small-world
network [10], [11], [12], and scale-free networks [2], [4],
[13], [14]. However, a graph of a certain topology is defined
by several parameters or properties (for example, a lattice
graph has a certain degree; and many different lattices can be
created each with their own degree). Although, the relationship
between certain properties of a graph and their influence on
evolutionary dynamics is still not known, many researchers
believe certain parameters of the graph are critical to the
emergence of cooperation, such as the average degree [10],
[15], and the clustering coefficient [16], [17].

In this paper we explore the relationship between certain
graph properties and the robustness of cooperation in a pop-
ulation of agents. In order to explore this relationship, we
designed two graph generation algorithms in order to generate
graphs which exhibit a set of desirable features, namely: a pre-
designed size, a pre-defined number of edges, and a specific
clustering coefficient. By running simulations on graphs of
the same size but with different clustering coefficients, we
were able to observe and analyse the effect the clustering

coefficient has on cooperation. The simulations show that when
one player in a connected, fully cooperating society is mutated
to defect, the entire society will turn to defection quickly if the
average degree is high. However, when the number of edges
is relatively low, the cooperation rate is linearly proportional
to the clustering coefficient in the graph.

The remainder of the paper is as follows: the next section,
Section 2, presents a short overview of previous research;
Section 3 presents algorithms for generating graphs exhibiting
a specific clustering coefficient; Section 4 presents our analysis
of the effect that different graph topologies may have on
cooperation; Section 5 presents the experimental set up and
results; finally, Section 6 presents the conclusions and possible
further work.

II. BACKGROUND

Adopting natural selection approaches in evolutionary
games leads to those agents obtaining higher payoffs being
selected at the expense of less fit agents. For agents positioned
on a complete graph, defectors obtain a higher payoff by
exploiting cooperators and are more likely to invade and
eliminate the cooperators. The result in this scenario can be
calculated using replicator dynamics [18]. However, for real
world social networks, the graph is not fully connected but
instead can exhibit variance in degree, clustering coefficient
and other properties. To understand the individual agent’s
behaviour in such graphs, evolutionary game simulations are
usually adopted; often times these simulations show that co-
operators have a greater chance to survive and be robust in the
presence of defectors.

Nowak concluded that without any mechanism that could
benefit cooperators, natural selection will always favor defec-
tors [1]. The effect of the graph topology, which he termed
“Network Reciprocity”, is one of the five mechanisms that
could help to maintain cooperation in the face of potential
invasion of defectors. There are experiments supporting the
idea that the population structure of the agents can have a
significant effect on the emergence of cooperation [2], [4].
Nowak and May introduced a spatial structure on agents
undergoing evolution where fitness was determined by their
score in the social dilemma game [5], [6], [7], [8]; their
experiments showed that a group of cooperators in the spatial
structure could maintain cooperation and avoid exploitation by
defectors. However, Hauert also showed, in snowdrift games,



that the spatial structure is more often detrimental to the
emergence of cooperation [19].

Many researchers moved from exploring the lattice grid
to considering more complex graphs such as small-world
networks and scale-free networks. For example, Santos and
Pacheco found that the cooperators could become more com-
petitive or even predominant in scale-free networks [13]. Fu
found that, in small-world networks, the degree heterogene-
ity is critical to the emergence of cooperation; cooperation
reaches its peak at some intermediate value of the fraction of
hubs and not at either the most heterogeneous nor the most
homogeneous case [10]. Moreover, many works have explored
evolution dynamics over different configurations of different
population structures [19], [20], [21], [22], [23], [24], [25].

There are common parameters in a graph that may have an
impact on the emergence of cooperation, such as the average
degree [10], [15] and the clustering coefficient [16], [17]. Tang
and his colleagues discussed the role of connectivity (average
degree) on the evolution of cooperation. Their experiments
show that the cooperation rate of evolution has maximum
value within a certain average degree and follows a one-
peak function [15]. Ren examined the evolutionary dynamics
on small-world networks with different levels of randomness,
and found that the randomness can promote cooperation in
a resonance-like way [26]. Wu et al. suggested that the
resonance-like phenomena is actually related to the clustering
coefficient instead of the small-world effect, as it is also exists
in a regular ring graph, which does not exhibit the small-world
effect [16]. Also, Lei et al. believe that the cooperation rate
will only increase when the hubs are occupied by cooperators
in a graph exhibiting a high clustering coefficient [17].

There has been some work in examining the role of the
clustering coefficient in this domain [16], [17]. However, their
main focus is to model real world networks, and hence the
clustering coefficient, number of nodes, edges and degree
are not controlled. Although the experiments are sufficient to
explore the emergence of cooperation on these graphs, they
do not fully explain the effect of the clustering coefficient
in isolation of other parameter’s influence. In this paper, we
attempt to explore the effect of the clustering coefficient by
fixing the other graph parameters as much as possible. We
then compare the experimental results of the evolution of
cooperation on a series of graphs with the same size (and
the same number of edges if necessary), over a range of
clustering coefficient values. Hopefully these results will help
show the effect that clustering coefficient has on the emergence
of cooperation.

Our approach has three main steps:

1) Create a graph generation algorithm that can gener-
ate graphs that satisfy all the requirements for our
experiments.

2) Create the graphs and analyse mathematically the
relationship between the graph structure and the clus-
tering coefficient and attempt to predict the outcomes
of simulations using this analysis.

3) Run the simulation experiments and observe the
results. Compare the observed results with our pre-
dictions.

III. GENERATE GRAPHS WITH ADJUSTABLE CLUSTERING
COEFFICIENT

The clustering coefficient can be calculated for a given
node as the number of its neighbours that are connected
over the total number of potential connections between them.
Therefore, for the entire graph, the clustering coefficient can
be calculated from the average of the clustering coefficient of
each node (which is called the average clustering coefficient),
or the number of triangles over the number of open triplets
in the graph (also called transitivity). They both represent the
graph’s clustered architecture, with a little difference on the
scaling of the value. However, the most common approach is
using the transitivity (or the global clustering coefficient).

Most of the previous approaches to generating graphs with
a tunable clustering coefficient attempt to model real-world
networks which have the following common properties [27]:

1) Skewed degree distribution.
2) Low mean geodesic distance.
3) High clustering coefficient.

Many of the existing graph generation algorithms with
tunable clustering coefficients are based on the preferential
attachment model (where a higher degree vertex has a higher
probability of attaching to new neighbours [28]) to generate
graphs exhibiting a power law in node degree [27], [29],
[30]. However, those approaches are only suitable for power
law graphs with relatively low clustering coefficients. Several
graph generation algorithms [27] are inspired by the Newman
algorithm [31], which is based on the configuration model
[32]. Experiments show that the clustering coefficients of the
graphs generated by those algorithms may have increasing
errors as the average degree increases [27]. There are also
other algorithms that use degree sequence [27] and random
walks [33].

In attempting to build a graph that closely models real-
world graphs, most of the algorithms mentioned above can
not guarantee a connected graph with a minimum error on the
clustering coefficient. In this work, in addition to generating
graphs with a tunable clustering coefficient, we also need the
generated graphs to satisfy the following conditions:

1) Both the clustering coefficient and the graph size can
be controlled.

2) The precision of the clustering coefficient is control-
lable (within a pre-defined error).

3) All of the vertices of the graph should be connected,
i.e., there are no isolated sub-graphs.

Considering all of the above conditions, we proposed 2
new graph generation algorithms in this work.

A. Ascending graph generate algorithm (ascGen)

Given that we wish to generate a graph with N vertices
and the desired total clustering coefficient is pc, let the actual
clustering coefficient be denoted as ac, and the allowed error
denoted as e, the pseudo-code of the ascGen algorithm is show
in Algorithm 1

Note that there are some mechanisms adopted to prevent
the generation to enter infinite loops.



Algorithm 1 Ascending graph generate algorithm
1. Create a fully connected graph (with a clustering coeffi-
cient = 0).
Create a graph with 3 vertices V0, V1, and V2.
Add 2 edges to the graph, linking V0 and V1, and linking
V1 and V2.
while i < N do

Add a new vertex Vi to the graph.
Randomly link Vi to an existing vertex Vr, (0 <= r <

i).
end while
2. Keep adding edges (which can guarantee the addition of
new triangles), until the actual clustering coefficient is close
enough to the expected clustering coefficient.
while pc− ac > e do

Randomly pick a vertex Vn.
if Vn has two unconnected neighbours Vp and Vq then

connect Vp and Vq .
end if

end while

The ascGen algorithm can generate the desired graph with a
fixed number of nodes and a specified clustering coefficient in
O(V 3) time 1. However, this approach has several drawbacks:

1) The number of edges in the graph increases until the
desired clustering co-efficient is found. Hence, it is
impossible to control the number of edges.

2) For graphs that have the same number of nodes, the
clustering coefficient could be the same and yet have
a different number of edges. As the edge that is added
each time is not guaranteed to add new triangles
(and hopefully increase the clustering coefficient), the
graph that ascGen generates always has a relatively
low number of edges (but not guarantee to have the
minimum number of edges).

3) When the number of edges in the graph is low, each
time we add an edge to create new triangles, the
clustering coefficient increases, but when the number
of edges is relative high in comparison to the number
of nodes, each time we add a new edge, it is highly
possible to add many more triplets, so, the clustering
coefficient may decrease for a number of iterations
as the edge number increases.

As we may create graphs with a desired clustering coeffi-
cient and varying number of edges (and hence average degree),
we cannot explore the effect of clustering coefficient alone with
these graphs. Another algorithm is required to create graphs
of a fixed size, a specified clustering coefficient and a fixed
number of edges.

B. Heuristic graph generation algorithm

Given we wish to generate a graph with N vertices, E
edges, and a desired total clustering coefficient, pc, let the
actual number of edges be denoted as e, and let the actual
clustering coefficient be denoted as ac, and let the allowed

1which is similar to the time complexity to calculate the clustering coeffi-
cient

error be denoted as e, the pseudo code of the heuristic graph
generation algorithm is presented as Algorithm 2

Algorithm 2 Heuristic graph generate algorithm
1. Create a fully connected graph (with clustering coefficient
= 0)
Create a graph with 3 vertices V0, V1, and V2.
Add 2 edges to the graph, linking V0 to V1, and linking V1
to V2.
while i < N do

Add a new vertex Vi to the graph.
Randomly link Vi to an existing vertex Vr, (0 <= r <

i).
end while
2. Add the rest of the edges on the connected graph ran-
domly to generate a connected random graph with expected
size and degree
while ( doe < E)

Add a new edge randomly
end while
3. Keep removing and adding new edge until the actual clus-
tering coefficient is close enough to the expected clustering
coefficient
while pc− ac > e do

for i = 0; i < E; i++ do
if the edge is not the only path between its two

vertices then
Calculate the potential clustering coefficient if

this edge is deleted
end if

end for
Delete the edge which produces a new clustering coeffi-

cient closest to the expected clustering coefficient following
deletion

for i = 0; i < N ; i++ do
for j = 0; j < N ; j ++ do

if Node i and Node j are not connected then
Calculate the potential clustering coefficient

if we connect Node i and Node j
end if

end for
end for
Connect the two nodes which produce a new clustering

coefficient closest to the expected clustering coefficient
following connection
end while

IV. GRAPH PROPERTY AND THE EMERGENCE OF
COOPERATION

A. Graph architecture

Given two graphs with the same number of nodes and
edges, we may generate graphs with different clustering co-
efficients. Clustering coefficients can range from zero (e.g a
tree structure) to one (a complete graph).

We adopt the heuristic graph generation algorithm to
generate several graphs exhibiting the highest clustering co-
efficient with a constraint on both the number of vertices
and the number of edges. The generated graphs with the
maximum clustering coefficient had similarities in structure;



the maximum clustering coefficient was achieved with graphs
containing a set of complete sub graphs each of the same size
where each of the subgraphs was connected to other subgraphs
by an edge (a bridge). A sample graph is depicted in Figure
1.

Fig. 1. The graph combined by 6 complete sub graphs of size 5

For a complete graph with N vertices, the graph has
N×(N−1)

2 edges. The clustering coefficient of the graph will
be 1 as we have the same number of triples as we do triangles
2. By connecting two complete graphs each of size N , the new
graph will have the number edges given by:

2× N × (N − 1)

2
+ 1 = N × (N − 1) + 1

The clustering coefficient can be calculated by as:
N×(N−1)×(N−2)

2
N×(N−1)×(N−2)

2 + 2× (N − 1)
=

N2 − 2N

N2 − 2N + 2

Furthermore, for M complete sub graphs each with N
vertices linked together by single bridges (no vertex has been
chosen to be a point on more than one bridge), when M →∞,
the clustering coefficient is:

lim
M→inf

M × N×(N−1)×(N−2)
2

M × N×(N−1)×(N−2)
2 + 2× (N − 1)

=
N2 − 2N

N2 − 2N + 4

.

Therefore, the maximum clustering coefficient of a graph
with a fixed known number of both vertices and edges can be
estimated. For example, to calculate the maximum clustering
coefficient for a graph with n vertices and an average degree of
d, we know the maximum clustering coefficient is when the
graph comprises several complete sub graphs connected by
bridging links. A complete graph with size s, has an average
degree of s−1. If many of those graphs are connected together,
the average degree will be roughly equal to (s−2)×(s−1)+2×s

s
(ignoring the nodes with the extra link connecting the sub-
graphs).

Therefore, the maximum clustering coefficient of a graph
with n vertices and an average degree, d, is approximately the
clustering coefficient of a graph comprising m = n/([d] +
1) complete subgraphs each with size [d] + 1, which has the
clustering coefficient of roughly d2−2d

d2−2d+4 when m is small,
and roughly d2−2d

d2−2d+2 , when m is big.

2Number of triangles is given by C3
N × 3 =

N×(N−1)×(N−2)
2

Conversely, if we wish to calculate the lowest possible
clustering coefficient for a graph, we must consider a graph
with the minimum number of triangles in the graph. We know
the clustering coefficient of any graph is equal to 0, provided
there are no triangles in the graph.

In terms of minimising the number of edges in a graph
with a clustering coefficient equal to zero, the smallest possible
structure of the graph is a rectangle. In order to build a graph
with the maximum number of edges for a given fixed size
of nodes, N , we can construct a regular graph comprising
rectangles. (which means the maximum distance between two
nodes is 2). In other words, for a graph with size N , with a
maximum number of the edges and a clustering coefficient =
0, the graph will be a regular graph with an average degree
equal to bN/2c.

B. The robustness of cooperation

The previous sections describe how different graphs with
different clustering coefficients, and maintaining the same
number of vertices and edges, can be created. By analysing
the robustness of cooperation on these different graphs, we can
systematically explore the clustering coefficient’s influence on
the emergence of cooperation.

The analysis below shows how the structure of the graph
influences cooperation levels.

Let’s assume the game to be run on the graph is a N × 2

player game with the following payoff matrix:
[
1 0
β α

]
The players learn from their neighbour who receive the

highest payoff. If the game is a social dilemma, then the
following constraint holds: α < 1 < β < 2.

For a defector with neighbours who are all cooperators, the
average payoff the defector receives is β > 1, which means,
it will obtain a greater score than its cooperative neighbours
and will therefore invade its cooperative neighbours. As for
any cooperator with at least one non-cooperative neighbour,
the average payoff it receives is less than 1. Moreover, if the
degree of the graph is sufficiently high, defection can spread
and occupy the entire graph in a few generation, as Figure 2.

However, if a defector also has other neighbouring defector,
its payoff may be smaller than 1, and on some certain graph
structures will be too small a payoff to spread. Such a graph
structure includes the scenario where a cooperative neighbour
has much fewer non-cooperative neighbours than cooperative
neighbours; this can provide the cooperators with a chance to
prevent the invasion of defectors.

Fig. 2. The defectors invade the entire graph in a high degree graph



If the defector has n neighbours in total and m of them
are also defectors, this defector’s average payoff will be
(n−m)β +mα. For a neighbour of this defector, who has p
neighbours but has only q defecting neighbours (including the
defector it self), this neighbour will have the average payoff
p− q.

Therefore, a defector can only invade a cooperative neigh-
bour when (n−m)β +mα > p− q.

It is highly possible that p−q > (n−m)β+mα, especially
when those two agents do not have too many common neigh-
bours. However, if one player in a fully cooperative complete
sub graph (the size of the sub graphs are n) mutates to become
a defector, all of its direct neighbours will learn to defect by
the next generation.

However, on the bridge between two subgraphs, a defector
will have m = n − 1 defecting neighbours, so it will receive
only β + (n − 1)α as a payoff, which is much smaller than
the payoff of its cooperative neighbour, who obtains a n −
1 payoff due to its n − 1 cooperative neighbours in its own
complete subgraph. So, in this case, the defector will never
invade another sub graph (Figure 3).

However, if the mutation happens to an agent on the bridge,
it may invade 2 sub graphs, but no more (Figure 4).

Fig. 3. one defector in the sub graph, since the vertex on the bridge linking
to the other sub graph will get less payoff than the cooperator in the other
sub graph that connected to it, it will continue swapping its strategy between
cooperate and defect, and never invade other sub graphs.

Fig. 4. The defector on the bridge may invade two sub graphs.

According to the analysis, the cooperation rate, following
the introduction of one defector in the graph, will be less
likely to be reduced as the clustering coefficient increases
(while keeping both size and the number of edges constant).
Therefore, we hypothesise that a higher clustering coefficient
is beneficial to the robustness of cooperation, as the higher
clustering coefficient leads to a more clustered graph.

However, the number of edges in the graph also influences
the structure of the graph, so in order to fully explore the rela-
tionship between the clustering coefficient and the robustness
of cooperation in the experiments, a fixed number of edges is
needed.

V. EXPERIMENT RESULT

The game we used in this experiments is the prisoner’s

dilemma, with the following payoff matrix:
[
1 0
β 0

]
, β = 1.51.

This matrix has been used in much previous research.

In each generation, players will play a 2 player game
against all of its direct neighbours and then receive the average
payoff (as each player may have a different degree). They then
learn the strategy that their most successful neighbour adopted.
We adopt a simple learning model with no randomness so as
to more easily understand the role each graph property plays
in the evolution.

There are two main sets of experiments performed. First,
we generate graphs with different clustering coefficients with-
out controlling the number of edges, using the ascending graph
generator. Second, we generate graphs with different clustering
coefficients while guaranteeing a fixed number of edges.

The experiments will explore the influence of the clustering
coefficient on the robustness of cooperation, and will also
show whether the average degree influences the effect of the
clustering coefficient on emergence.

A. Cooperation on graphs with different clustering coefficients
without considering the average degree

The experiments are first undertaken on a set of graphs with
5000 vertices with the clustering coefficients varied from 0.1
to 0.6, generated by the ascending graph generation algorithm.
The graph was initialized with all cooperators except for one
random defector. We record the first 100 generations. Each
experiment is the average value of 500 independent runs. The
results are presented in Figure 5.

Fig. 5. without controlling the number of edges, the experiment result is not
significant enough to show the influence of the clustering coefficient on the
robustness of cooperation.

Figure 5 shows that when the clustering coefficient is equal
to 0.1, 0.2, and 0.3, the cooperation rate is around 0.8, and



the cooperation rate increases to 0.9 when the clustering coef-
ficient is equal to 0.4, 0.5, and 0.6. Despite some fluctuations,
a general trend can be observed.

It may be because the ascending graph generation al-
gorithm adds more edges when attempting to increase the
clustering coefficient. With the addition of more edges, the
clustering coefficients could increase without changing the
inherent structure of the graph in to a highly clustered graph
which can prevent the spread of the defection.

However, to explore the effect of the clustering coefficient
on the emergence of cooperation, we not only need to use the
same size graph in terms of the number vertices but same size
graphs in terms of both the number of vertices and the number
of edges.

B. Cooperation on graphs with different clustering coefficients
taking into account the average degree

The experiments above showed that the cooperation rate
will decrease quickly as the average degree of the graph
increases. To fully understand the relationship of the clustering
coefficient and the robustness of cooperation, another experi-
ment has been undertaken which uses a set of graphs generated
by the heuristic graph generate algorithm, with 1000 vertices,
and a relative smaller number of edges, which is 2500, and
different clustering coefficients. According to the calculation
in the last section, the graph with the average degree of 5, will
has the maximum clustering coefficient around 0.86 (Because
the graph which has the architecture that is combined by a
series of complete sub graphs with the size of 5, has the
average degree 4.4, has the maximum clustering coefficient
52−2×5

52−2×5+2 ≈ 8.6).To obtain a sufficient sample, 10 different
graphs have been generated for each clustering coefficient,
from 0.1 to 0.8. For each graph, the experiments has been ran
100 times independently. So, for each clustering coefficient,
the result is the average value over 1000 independent runs.
The result of the experiments is shown in the Figure 6

Fig. 6. With the same size, the cooperation rate of the graph is linearly
increasing as the clustering coefficient increasing.

Figure 6 shows that with the same number of vertices and
edges, the graph with high clustering coefficient, can benefit
cooperation, prevent defector’s spread.

VI. CONCLUSIONS

This paper presents two algorithms for generating graphs
with a pre-defined clustering coefficient; the first constrains the
number of numbers but not the number of edges; the second
constrains both the number of nodes and the number of edges.

Simulations are used to explore how the average degree
in the graph and the clustering coefficient of a graph influ-
ences the robustness of cooperation in a spatially organised
population of agents.

The graph with a restricted number of edges and a high
clustering coefficient is more likely to be constructed as a
series of highly clustering subgraphs, which could, in theory,
benefit cooperation. Moreover, the maximum clustering coef-
ficient of a graph with a certain number of vertices and edges
can be estimated. We can also calculate the maximum number
of edges that can be added to the graph while maintaining a
clustering coefficient as 0 in a graph of a specific size.

As we expected, experiments show that in a connected
graph of cooperators, if the average degree is high, the co-
operators are not robust if one player mutates to be a defector.
Conversely, with a limited average degree, graphs with a high
clustering coefficient can provide better cooperation.

Future research will investigate further into the graph
topologies. This may include whether the multi-subgraph struc-
ture provides the best scenario for co-operators to be robust to
invasion from defectors.
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