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Abstract. In this paper we investigate the emergence of cooperation in
spatially organised games. We extend traditional spatial models and use
a graph to model the environment. In the graph representation of the
environment, each node represents an individual, and an edge between
two individuals represents a neighbourhood relationship.

In our model, players interact in a Prisoner’s Dilemma. We examine
various learning mechanisms where the agent’s strategies are selected
and propagated. We investigate the effect of allowing agents learn from
their neighbours to improve their individual performance.

We also explore the evolution of neighbourhoods by enabling them to
grow or shrink depending on their relative fitness to other neighbour-
hoods.

1 Introduction

Many approaches have been investigated in an attempt to understand how coop-
eration may emerge in societies of autonomous, rational agents. The Prisoner’s
Dilemma has been adopted as the standard for studying cooperative behaviour
[1], [2], [12], [11]; and has also been used in work focussing on spatially organised
games [6], [9], [3], [13].

Classical game theory [8] doesn’t include the effect of spatial structures on a
population. In many populations, both real and artificial, individuals are more
likely to interact with their neighbours than interact with a player chosen at
random from the population. In order to model such scenarios more realistically,
it is necessary to spatially organise agents in a multi-agent system, and for in-
teractions to take place according to these spatial constraints. Furthermore, it is
unlikely that neighbourhoods will be of uniform size throughout the population.
We adopt a graph model to represent the neighbourhoods.

While our model encompasses many features and extensions of traditional
models, our primary focus is on the effect of defining different social structures
and neighbourhoods based on our graph representation of the environment.

In the experiments discussed in this paper, we investigate the emergence of
cooperation or defection in a spatially structured society. We compare the spread
of cooperation in a graph based model to traditional grid representations. We
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investigate a range of neighbourhood sizes and learning mechanisms. Further-
more, we investigate the spread of cooperation in a spatially structured society
where the neighbourhood structure itself is allowed to evolve and change, i.e.,
fit neighbourhoods are allowed to increase in size. Much research in traditional
models deals with patterns of cooperators and defectors [9] — clusters of co-
operators and defectors situated on a grid with cooperator-defector interactions
along the edges of the clusters. They don’t assess the overall fitness of each neigh-
bourhood. Our model allows fit neighbourhoods to propagate and conversely, if
a neighbourhood has a low fitness value it is reduced in size.

2 Related Research

2.1 The Prisoner’s Dilemma

The Prisoner’s Dilemma is described as a non-cooperative, non-zero-sum, two
person simultaneous game. In the prisoner’s dilemma, two players are separated
and faced with a decision. Each has two alternatives — to cooperate or defect.
Neither has knowledge of the other player’s choice. If they both cooperate, they
receive a payoff, R. If both defect, they receive a smaller payoff, P. If one defects
and the other cooperates, the defecting strategy receives the largest possible
payoff, T'; and the cooperator the smallest possible payoff, S.

For a dilemma to exist, the following must hold: T > R > P > S. The
constraint T+ S < 2R must also hold. The constraint 7'+ S < 2R prevents
a form of cooperation where two players obtain an average payoff greater than
cooperation by alternating between cooperation and defection.

2.2 Spatial Prisoner’s Dilemma

Nowak and May [9] model a simple, deterministic, spatial version of the Pris-
oner’s Dilemma, with no memories among players and no strategic elaboration;
showing that cooperators and defectors and co-exist indefinitely for a subset of
the parameter space.

Many researchers have investigated the effect of varying payoffs [13]. Some
have suggested that if agents are indistinguishable from each other, genuine
cooperation cannot emerge (Frank [4], Maynard-Smith [8], Hofbauer [7], Weibull
[18], Samuelson [15]). Evidence in social science shows that cooperation can
emerge even if creatures cannot recognise individual players [17], [11]. Epstein[3]
shows that cooperation can emerge and endure if negative payoffs are introduced.
He requires that 77> R > 0 > P > S, and his results depend largely on the
values of T, R, P and S.

Cooperators in the population will benefit those close to them and flourish
if the bonus for defection is not too large [5], [11]. Hence, groups of cooperators
situated adjacent to each other can allow cooperation to flourish through mutual
cooperation. Conversely, for defectors, they hurt their own kind and hence groups
of defectors will not do well.
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Nowak et al. [10] also experimented with the grid size and topology and also
the neighbourhood type. They extended their analysis to explore simulations
where players are randomly distributed on a two-dimensional plane. Players
are said to be neighbours of each other if their distance is less than a certain
radius of interaction r; so the number of neighbours each player has can vary.
The simulations were deterministic and in discrete time. Results showed that
populations on random grid were more static than on rectangular lattices and
that cooperation can emerge and endure.

Ashlock [16] focuses on a static population and the effectiveness of a choice
/ refusal strategy undertaken by some agents in the population. He implements
a graph based model, where each node represent an individual, and an edge
connecting two vertices represent some relationship between the two individuals.
Initially, the graph is fully connected and each edge is assigned a weight of zero.
When two individuals play, the weight is incremented by 1. These weights are
plotted in order to show population characteristics. Analysis is performed on a
significant play graph. Edges are considered significant if they are greater than a
given threshold value; and these edges determine the significant play graph. The
significant play graph adds valuable information about the social behaviours of
a system.

3 Simulator Design and Description

Our simulator allows us to examine the emergence (or not) of cooperation for
a wide range of parameters. We compare different topologies, neighbourhood
types and update strategies for varying radius values.

For a finite number of iterations (unknown to the player), each agent plays a
PD game against each of its neighbours. Each player is either a pure cooperator
or a pure defector. At the end of each game, depending on the payoffs received by
each agent and the update strategy in place, the agent adopts the strategy of one
of its neighbours. Following the completion of each game, and the application of
the update rules, the number of cooperators is recorded.

3.1 Parameter Range Modelled

The parameter space within which agents play the PD game is very important.
In the following section we discuss the parameters that are modelled and stud-
ied in our system. We discuss topology, initial configuration of the population,
neighbourhood type and learning mechanisms.

Topology. A common example of a topology used in simulations is that of
a N x M rectangular lattice. An N x M grid is a planar graph with N x M
vertices arranged on a rectangular grid, and with edges connecting horizontally
and vertically adjacent vertices.

We compare two types of topology. In our model, the population is placed
randomly on either an N x M lattice or on a graph type structure. The N x M
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lattice is standard for traditional spatial models. This planar grid type structure
is not an accurate or flexible representation of real social systems so we have
also simulated a more general graph based environment. Our graph is made up
of nodes — one node denotes one member of the population — and depending
on the connectivity, edges which connect nodes at random.

A general unidirectional graph is a better representation of real systems.
Individuals in our simulated environment are connected to other individuals via
an edge. Rather than representing distance or adjacency, this edge can be a
representation of a different type of relationship. An individual’s neighbourhood
can be built depending on some social relationship taken into account. Kinship,
similarity, mutual interest are typical criteria used when establishing the social
components of a community [14].

Initial configuration of cooperators and defectors. The configuration of
the population can also be defined. This includes the ratio of cooperators to
defectors and where they are located in their environment. They can be placed
either randomly, or a specific configuration can be imposed.

Neighbourhood type. The neighbourhood refers to the set of agents with
which a player interacts. There exist two traditional neighbourhood types: Von
Neumann and Moore. In the Von Neumann neighbourhood, each player interacts
with its four nearest neighbours to the north, south, east and west. In the Moore
neighbourhood each individual interacts with the eight neighbours reachable by
a chess-king’s move - i.e. one square in any direction.

Our model simulates these neighbourhoods types as well as a graph type
network. In the graph network, individuals are connected to a set of individuals,
chosen at random. The size of this neighbourhood depends on the connectivity
imposed at the outset of the experiment. Our simulator also allows us to ex-
periment with different radius values in order to determine what effect this has
on a system. As the radius, and thus the neighbourhood size increases, we can
determine the resulting impact on cooperation.

Player Update. The model enables us to compare many different update rules,
some of which are deterministic, some stochastic. Depending on its own score and
the scores of its neighbours, each player may update its strategy. Different update
rules exist: e.g. Best Takes Over, Imitate the Better and Proportional. Our model
is capable of simulating each of these. If strategies are updated using Best Takes
Over, a player adopts the strategy of its most successful neighbour. Imitate the
Better involves a player comparing its own score with that of it neighbours. If
the difference is positive, the player imitates the neighbour with a probability
proportional to the difference. The proportional update is where a player adopts
the strategy of one of their neighbours with a probability proportional to their
scores. Other learning models can also be employed. Update rules can be either
deterministic or stochastic. In the stochastic game, update rules will be executed
with some degree of probability.
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We implement stochastic update rules to discourage swift update convergence
which can sometimes lead to a sub-optimal outcome. Deterministic local player
update means that after the first round, players are more likely to face opponents
playing the same strategy as themselves. This can tend to a bias in favour of
cooperators if defectors end up playing defectors. This can quickly drive to ex-
tinction strategies that would normally survive and eventually dominate under
more stochastic update rules.

Neighbourhood Update. As well as individual learning mechanisms described
in the previous section, our model allows us to update and evolve neighbour-
hoods. The evolution is executed at discrete time steps and in a stocahstic nature
to prevent swift update convergence which could lead to a sub-optimal outcome.
Depending on a neighbourhood’s fitness relative to the average neighbourhood
fitness, a new agent can be propagated or indeed an agent can die off. Fitter
neighbourhoods are allowed to grow while less fit neighbourhoods decrease in
size.

4 Results

In our experiments, we aim to compare agent behaviour in grid and graph topolo-
gies. We then extend our graph experiments and examine behaviour as a result
of a neighbourhood’s ability to grow or shrink relative to neighbourhood fitness.

Initially, we varied the environment size and ran simulations with 100, 400
and 900 agents. Results for the varying sizes showed similar graph patterns
emerging for mean values. The results in the rest of this section are based on
simulations run for 900 agents.

4.1 Grid topologies

In our experiments, we vary the radius size (R = 1, 2, 3). We bias the initial
configuration such that 90% of agents are cooperators. We explore the behaviour
of the agents given different update strategies (Best Takes Over and Imitate
the Better), across different neighbourhood types (Von Neumann and Moore).
The results depicted in Figures 1, 2, and 3 show us that for the Von Neumann
neighbourhood with R = 1, cooperation can coexist with defectors for all update
strategies. This is due to the small neighbourhood size defined and results are
consistent with traditional models.

For the Moore neighbourhood type with R = 1, levels of cooperation can
be maintained for deterministic update rules. However, the stochastic update
mechanism results in the emergence of defection. For both deterministic and
stochastic updates, the imitate the better update strategy showed slightly better
results in terms of cooperation for Moore and Von Neumann neighborhoods with
a radius of 1.

Due to the increase in neighbourhood size, for all neighbourhood types with
a radius value of R > 1, defection becomes the norm, with one exception —
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Fig. 3. Von Neumann: Stochastic Imitate the Better

at R = 2, the Von Neumann neighbourhood, with a deterministic Best Takes
Over update mechanism, a small degree (10% - 15%) of cooperators survive. As
expected, the rate at which cooperation decreases is proportional to the increase
in R.

4.2 Graph topology

We also explore the behaviour of agents given different update strategies, using
the graph topology and neighbourhoods. For deterministic updates widespread
defection is almost immediate. For some runs of the experiment, a small number
of cooperators coexist with defectors. However, this could be a result of a small
neighbourhood of cooperators being disconnected from the rest of the graph.

Using stochastic update rules has little effect on our simulated graph environ-
ment (Figures 4 and 5). Convergence is similar but occurs over a longer period
of time.

Defection spreads more quickly through our graph topology for a number of
reasons. Firstly, depending on the seed, the graph neighbourhood can be much
larger than that of the Moore or Von Neumann, and since defection is propor-
tional to neighbourhood size this seems reasonable. Also, our graph topology
represents a social system where behaviour can spread more quickly than on
traditional lattice structures.

355



Humber of Cooperators

Humber of Cooperators

Graph neighbourhood: Stochastic Best Takes Ouer
L=l T T T T T T T T

=] i@ 2a 2@ 4@ 5@ 1] Fa 28 9@
Time tHumber of iterations?

Fig. 4. Graph: Stochastic Best Takes Over

Graph Meighbourhood: Stochastic Imitate the Better
s0a T T T T T T T T

@ 1 1 1 1 b
a 18 za 38 48 j=1: [=1:] 7a 28 28

Time tHumber of iterations?

Fig. 5. Graph: Stochastic Imitate the Better

356



4.3 Graph neighbourhood propagation

In the previous experiments, we updated strategies by allowing agents learn
from their neighbours, i.e. strategies which are fit in comparison to the neigh-
bours are propagated. We paid no attention to the fitness of neighbourhoods
relative to other neighbouhoods in the population. In this experiment, we allow
fit neighbourhoods to grow. A neighbourhood which is fitter than the average
neighbourhood is allowed to grow in proportional to its fitness above the aver-
age. Similarly, less fit neighbourhoods decrease in size. We investigated the effect
of neighbourhood propagation on our graph topology. Figure 6 shows the out-
come for one of our experiments. Here we initiated our population to 900 with
95% cooperators and experiments were run for 1000 generations. The resulting
graph shows that, initially, defecting strategies quickly flourish and propagate.
However, as the simulation continues and neighbourhoods evolve by propagat-
ing or shrinking depending on their fitness, we can see the decline of defecting
strategies and emergence of a cooperative environment.
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Fig. 6. Graph: Stochastic Imitate the Better including Propagation

5 Conclusion & Future Work

In this paper we explored the parameter space, with particular emphasis on
the environment topology. This paper describes a graph topology within which
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agents can participate in a Prisoner’s Dilemma game. A comparison of the graph
topology and traditional topologies for varying parameter ranges shows that
behaviour spreads more quickly through the graph type environment. We see
that in most cases, defection spreads. However, by modifying the graph structure
and allowing neighbourhoods to grow or shrink depending on relative fitness,
cooperation dominates.

Future work will involve exploring a larger strategy set and fuller investiga-

tion into the evolution of the social structure (i.e. the graph topology).
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