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Abstract— The concept of trust is central to engendering
cooperation among autonomous agents. This paper focuses on
the topic of trust and how agents may bias their interactions
based upon implicit trust. We define implicit trust as that
which is conveyed through the utilities of a simple game
offer. We introduce this concept of implicit trust and present
our motivations for examining this phenomenon. We define
a game theoretic framework, including possible strategy sets
and a game environment. We outline a series of experiments
which illustrate the effects of implicit trust. Finally, we draw
conclusions based on the experimental results presented.

I. INTRODUCTION

Trust is a fundamental consideration in the development
of open, dynamic multi-agent environments. It is an in-
trinsic key to initiating and maintaining cooperative agent
interactions in these challenging environmental conditions.
There are relatively few formal definitions of trust, but one
chosen by Griffiths and Luck[4] describes trust as a form
of risk. They base this partly upon the observations of
Marsh that ‘entering into a trusting relationship is choosing
to take an uncertain path that can lead to either benefit
or cost depending on the behaviour of others’[8]. A peer’s
reliability is determined through their track record, which
is represented by a metric called trust. Through classifying
risk as an indicator of trust, Griffiths and Luck state that this
inverse relationship ‘allows us consider the limits of trust
more precisely and to quantify it’. They state the relationship
between trust T and risk R as the following:

R =
1
T

Griffiths and Luck[4] base their model of trust upon
work by Marsh[7] and Gambetta[3]. Stephen Marsh argues
that trust may be decomposed into three distinct elements;
basic, general and situational trust[7]. Basic trust can be
considered as a representation of how trusting an agent is
towards all its peers. This can be represented as a single
value reflecting a level of trust towards all agents in the
environment. This differs from general trust, which reflects
how much an agent trusts each of it’s peers individually. Here
an individual value represents each pairwise matching such
as ‘X trusts Y’. Situational trust reflects one’s trust towards
a peer, given a number of distinct situations. An agent
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may be very trustworthy for some relatively unimportant
task, while very untrustworthy for a more significant one.
Marsh uses the following equation to allow an agent X
estimate the situational trust of an agent Y with respect to a
situation α. The parameters U, I and T represent the utility,
the importance of α and the general trust of X towards Y
respectively:

Tx(y, α) = Ux(α) × Ix(α) × T̂x(y)

Our proposed implicit representation shares a number
of similarities with situational trust. Real world interac-
tions often contain notions of implicit trust; for example,
repeatedly buying goods from the same vendor. Once a
trusting relationship emerges then the potential stakes can
rise reflecting this increased trust. These increased stakes
result in a greater temptation to defect which is the critical
feature we are hoping to model. From these core principles
we hope to examine how agents might successfully bias their
interactions among their peers based on implicit trust.

Agent interaction models have been discussed by numer-
ous researchers who have primarily focused on trust and
tag based models. However, no clear picture has emerged
addressing the known drawbacks of these current tech-
niques. Tagging models have been found to perform badly
in highly dynamic environments[6], while also undermining
heterogeneity[9].

In order to gain a greater understanding of how agents can
successfully bias their interactions we examine an adapted
representation of the well known Iterated Prisoner’s Dilemma
game. This adaptation of the Prisoner’s Dilemma is founded
on the belief that game interactions which remain static
across multiple encounters do not reflect the changing nature
of those relationships over time. Previously, changes in
these relationships were modelled solely through individual
players’ strategies. However, an intuitive extension of the
game would reflect relationship changes directly through the
game parameters. Therefore we define implicit trust as that
which is conveyed through the utilities of a simple game
offer. In a related article Eriksson and Lindgren proposed
and implemented a game theoretic framework involving
a repeated game with random observable payoffs[2]. Our
proposed framework is outlined in the following sections.

II. THE PRISONER’S DILEMMA

The Prisoner’s Dilemma was proposed in 1950 by Melvin
Drescher and Merrill Flood, but it was the well known
mathematician Albert W. Tucker who coined it’s name and



wrote the first article on the subject[13]. The Prisoner’s
Dilemma (PD) is a simple two-player game where each
player must make a decision to either cooperate (C) or defect
(D). Both players decide simultaneously and therefore have
no prior knowledge of what the other has decided. If both
players cooperate they receive a specific payoff. If both
defect they receive a lower payoff. If one cooperates and
the other defects then the defector receives the maximum
payoff and the cooperator receives the minimum. The payoff
matrix outlined in Table 1 demonstrates the potential payoffs
for each player.

TABLE I

PAYOFF MATRIX

Players Choice Cooperate Defect
Cooperate (λ1, λ1) (λ2, λ3)

Defect (λ3, λ2) (λ4, λ4)

The dilemma is a non-zero-sum, non-cooperative and
simultaneous game. For the dilemma to hold in all cases,
two important constraints must be obeyed:

λ2 < λ4 < λ1 < λ3

2λ1 > λ2 + λ3

λ2 is the sucker’s payoff, λ1 is the reward for mutual
cooperation, λ4 is the punishment for mutual defection
and λ3 provides the incentive or temptation to defect. The
dilemma also states 2λ1 > λ2+λ3. This constraint prevents
players taking alternating turns receiving the sucker’s payoff
(λ2) and the temptation to defect (λ3), therefore maximising
their score. The following are commonly used values for the
Iterated Prisoner’s Dilemma:

λ1 = 3, λ2 = 0, λ3 = 5, λ4 = 1.

In the non-iterated game, the rational choice is to de-
fect, while in the finitely repeated game, it is rational to
defect on the last move and by induction to defect all the
time. However, if there exists a non-zero probability the
two players will play again, then cooperation may emerge.
More extensive background references focusing solely on
the Prisoner’s Dilemma are available by Axelrod[1] and
Hoffmann[5].

III. IMPLICIT TRUST GAME

As we have outlined in the previous section the Iterated
Prisoner’s Dilemma is a simple two player game, within
which two players are presented with two options, to co-
operate or defect. In this section, we define a new game
which follows a similar format. In this game, two players are
presented with the same choice, to either cooperate or defect.
But the game payoffs presented represent a potential level of
risk on the part of the game participants. A rational agent will
propose or accept levels of risk based on some indication of
trust. One possible indicator of trust would be some function
of previous moves such as average cooperation. This concept

of risk as an indicator of trust is the underlying principle
that motivates this game. As a result the main premise of
our proposed game involves modeling implicit trust within
a choice or refusal environment similar to that described by
Ashlock et al. [12].

There are significant challenges in defining and simulating
a strategy space as large as that suggested. We therefore
propose a number of specific constraints, which serve to limit
the resulting strategy space. The ‘temptation to defect’ or
λ3 value changes to reflect previous interactions. This value
may be calculated using a various number of methods. We
investigated two possible methods of representing this payoff
value.

Firstly, we used a simple linear representation of the
‘temptation to defect’ TD. This is determined using a
linear relationship between the explicit metric of ‘average
cooperation’ and the resulting TD. In order to meet the
constraints of the PD we enforce a simple rule forbidding
this TD value ever equalling λ1 or 2 × λ1.

Secondly, we examined an equation which is also deter-
mined through the explicit metric, ‘average cooperation’.
This representation allows us to vary the relationship of
the ‘average cooperation’, A and the resulting TD, through
using differing φ values. Due to the composition of the
equation, the Tan function naturally enforces a boundary on
the possible range of TD, through the naturally occurring
asymptotes.

TD = λl +
λu − λl

2
+

(
2 tan−1(A × φ)

π
× λu − λl

2

)

This calculation for TD represents the new value of λ3
(the temptation to defect). The resulting game payoff matrix
remains similar to the traditional IPD game.

TABLE II

IMPLICIT TRUST PAYOFF MATRIX

Players Choice Cooperate Defect
Cooperate (λ1, λ1) (λ2, TD)

Defect (TD, λ2) (λ4, λ4)

The adapted payoff matrix shown uses the original λ
values specified earlier. As with the traditional game these λ
values must meet the constraints specified in the traditional
IPD game. The value of λ3 is calculated using two new
values. These define the upper λu and lower λl bounds of
the resulting TD value. This serves to limit the range of TD
so it always remains greater than the lower bound λl and
less than the upper bound λu. Since the value of TD may
change reflecting the actions of the players it must remain
in the following interval range:

λ1 < TD < 2 × λ1

Due to this important condition we can simply apply the
following rules of thumb for calculating the upper and lower



bounds of TD. Throughout our simulations we used this as
the standard guide for calculating λu and λl.

λl = λ1

λu = 2 × λ1

Similarly, since TD must remain strictly within these
specified bounds we must clearly define the parameter A.
This value is a function of previous interactions between the
two players and is derived from their average cooperation A
to date. The resulting value of A must remain in the range:

−1 ≤ A ≤ +1

The temptation to defect value reflects past history through
the parameter A in the calculation of TD while remaining
within the constraints of the traditional PD game. The values
of λ1, λ2 and λ4 remain constant throughout all player
interactions as in the original PD. The value φ in our
second implicit trust representation is used as a simple scalar
quantity through which the relationship of A and TD can
be varied. Equally the values of λl and λu serve to keep all
values returned by the function within the acceptable range
as represented by 3π

4 and π in the Tan function.
In summary, our game must satisfy the constraints spec-

ified in the traditional IPD. These two constraints must be
satisfied in order to maintain a Prisoner’s Dilemma.

1) λ2 < λ4 < λ1 < λ3
2) 2λ1 > λ2 + λ3
As we have previously stated, we have two possible

representations of our extended implicit trust game. One uses
a simple linear relationship between the parameter A and the
resulting TD used. The second uses the following equation
to calculate the temptation to defect.

1) TD = λl + λu−λl

2 +
(

2 tan−1(A×φ)
π × λu−λl

2

)
IV. STRATEGY SET

In order to define a strategy set we draw upon research by
Nowak and Sigmund 1993[10]. A typical strategy includes
three primary strategy values representing probabilities of
cooperation in an initial move pi and in response to a co-
operation pc or defection pd. The resulting strategy genome
looks like the following:

Genome = pi, pc, pd,

Our implicit trust model will make game offers to selected
peers through roulette wheel selection. Players using this
selection algorithm will construct roulette wheels based on
total payoffs received from previous interactions with their
peers. As a result of this selection process, peer selection
will rapidly progress from initially random game offers to
highly structured interactions. The decision to accept or
refuse game offers will be determined probabilistically using
the game payoffs offered. A higher temptation to defect
will represent a higher probability of acceptance. Through

successive simulations we will examine the behavior of
our implicit trust representation. We will draw comparisons
with existing agent interactions models and conclude on the
relative merits of implicit trust over these existing models.

V. ENVIRONMENT

Our game environment will simulate a choice or refusal
model similar to that proposed by Ashlock et al.[12]. This
environment allows agents to propose games, which can then
be accepted or rejected. This judgement will be determined
probabilistically based on the game offered. Interactions that
are initially random will become increasingly more structured
as information regarding previous interactions becomes more
abundant. The game sequence will follow a series of simple
steps:

• Game Offers: Players use roulette wheel selection to
make game offers based on previous payoffs received.
Choice and refusal decisions are made by players based
on the game payoffs offered.

• Game Moves: Agreed games are played over N number
of iterations.

• Repeated Game Offers and Moves: Based on repeated
game interactions new game payoffs will be calculated
and offered.

• New Generation: Each player’s fitness is determined
through their total game payoffs. Based on these mea-
sures of fitness our replicator dynamic will allocate
representation in successive generations.

Fig. 1. Game Cycle

We use a simple replicator dynamic in our initial sim-
ulations. This evolutionary algorithm simply allocates each
player’s representation in successive generations based on
their fitness.

VI. EXPERIMENTAL SETUP

In this section we will present a series of experiments
that demonstrate the behavior of our implicit trust models
using a series of important metrics. Firstly, we will outline
some important experimental parameters. The following is
a demonstration of how TD may be calculated using one



of our implicit representations. We set the upper and lower
bounds of our λ3 value as λu and λl. Therefore in our
example we use the following λ values.

λl = 3, λ2 = 0, λu = 6, λ4 = 1.

For simplicity we use a φ value of 1. The example shown
represents a game pairing where there has been equal levels
of cooperation and defection. Therefore average cooperation
A is 0.0 when represented on the following scale:

−1 ≤ A ≤ +1

Example calculation of TD where π = 180, λl = 3, λ2 =
0, λu = 6, λ4 = 1, A = 0, φ = 1:

TD = λl +
λu − λl

2
+

(
2 tan−1(A × φ)

π
× λu − λl

2

)

TD = 4.5 +
(

0
180

× 1.5
)

TD = 4.5

Our experiments are designed to compare the differences
and similarities between implicit trust and a simple choice
and refusal IPD game. This choice and refusal game will
act as a benchmark, through which we hope to assess the
behavior of implicit trust. Both implicit and explicit models
use identical implementations aside from their ability to
reason about which game offers to accept or reject. In this
case, our explicit trust simulation uses average cooperation
to determine responses to game offers while our alternative
model uses implicit trust. The probability of accepting a
game offer is determined as follows in our implicit trust and
explicit trust models respectively:

PAccepting =
TD − λl

λl + λu

PAccepting = A

Because implicit trust biases interactions based upon
changing payoffs, we must use some fair payoff structure for
our IPD model. Here payoffs will remain fixed from game
to game but their value must be comparable to those used
in the implicit trust model. The fixed payoff matrix used by
our simplified choice and refusal IPD is the following:

TABLE III

C/R IPD PAYOFF MATRIX

Players Choice Cooperate Defect
Cooperate 3, 3 0, 4.5

Defect 4.5, 0 1, 1

Through using the upper and lower bounds of 3 and 6,
a temptation to defect value of 4.5 would reflect a game of
equal amounts of cooperation or defection. In other words,

average cooperation A on a scale of −1 ≤ A ≤ +1 would
equal 0.0. In all of the experiments depicted, the length of
each game is 100 iterations long. While no two agents can
play each other more then 500 times in any given generation.
Throughout all our simulations we use a population of
125 agents. This population of agents is initialised using
a probabilistically even distribution of strategies. All the
experiments shown in this paper use averaged data which
was taken over multiple simulations of the same experiments.

A. Average Cooperation

In this experiment we examine the average cooperation
of the overall population using alternative agent interactions
models. We examine both our implicit trust representations
and compare their behavior with a simple choice and refusal
model with no ability to bias interactions using implicit
trust. As we have stated earlier this simplified model uses
a fixed payoff matrix throughout all game interactions while
determining choice and refusal using average cooperation.
All interaction models use roulette wheel selection based
upon previous payoffs received to determine game offers.
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Fig. 2. Average Cooperation

In the experiment shown, we observe the behaviors of
our interaction models with respect to average coopera-
tion throughout the population. We observe that each of
these interaction models maintain similar levels of cooper-
ation throughout the simulations. The levels of cooperation
achieved in each of the simulations is high given that our
populations are composed of non-deterministic strategies.
We note that both of our implicit models are similar to
the explicit trust model in maintaining levels of cooperation
throughout successive generations. Across multiple simula-
tions, implicit trust prevented populations of agents from
converging to total defection.

B. Average Fitness

In the following experiment we examine a closely related
metric involving the overall fitness of the population. We
calculate the average fitness of all agents throughout the



population based on their average payoffs received in each
generation. As in the previous experiment we examine almost
identical choice and refusal models. The benchmark interac-
tion model is again used here with a fixed payoff matrix.
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Fig. 3. Average Fitness

In the experiment shown, we observe the behavior dif-
ferences between our interaction models. We can observe
the success of each interaction model in maintaining quite
significant levels of fitness throughout the population. We
observe the differences in average fitness between our im-
plicit trust models and the explicit trust benchmark. From
the experiment shown, we can conclude that the implicit
trust models succeed in maintaining high levels of fitness
similar to the explicit trust benchmark. We observe that
our φ = 20 implicit trust model achieves higher levels of
fitness throughout a number of generations. This can be
explained through the ability of this implicit trust equation to
change TD values more sensitively with respect to previous
agent interactions. The resulting changes have a direct and
significant effect on how agents bias their interactions.

This similar performance may stem from two possible
factors in our implicit models. Firstly, our implicit trust
models are successfully biasing agent interactions away from
those that are less cooperative. Secondly, due to the changing
payoff structure of the implicit trust models, agents may be
‘cashing in’ on heightened TD values which may be built
up over a series of cooperative moves. This characteristic of
implicit trust is not possible in the explicit model as payoffs
always remain static throughout all game interactions. This
factor may contribute to the effectiveness of implicit trust
in biasing interactions as it directly affects the payoffs
received from certain peers who facilitate this ‘cashing in’
phenomenon.

C. Average Number of Peer Interactions

In the following experiment, we examine an important
metric which indicates levels of connectivity throughout
our population. Through tracking the number of successful
pairwise games per agent, we achieve an indication of how

our interaction models are successfully biasing interactions
towards their peers. As we have seen from previous research,
limiting agent interactions contributes significantly to achiev-
ing heightened levels of fitness among agents. Tagging mech-
anisms are extremely successful at boosting agent fitness but
these are built upon extreme partitioning of agent populations
and high attrition rates in the initial generations[6]. In this
experiment, we examine how successfully our model has
allowed agents to voluntarily restrict their interactions for
their own benefit. Unlike tagging techniques, these interac-
tions are not enforced rigidly by the environment and are
instead probabilistically determined through our implicit trust
mechanism.
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The shown experiment outlines how the respective in-
teraction models limit their interactions over a number of
generations. As we can see, our implicit trust models be-
have similarly to the benchmark through converging to a
small limited set of pairwise interactions. This underscores
our results in the previous experiments, which showed im-
plicit trust models performing similar to the explicit trust
benchmark. We can also identify that models which limited
agent interactions more excessively, also achieved the higher
degrees of cooperation and fitness. This can be explained
partly through a models ability to limit agent interactions to
a smaller subset of more reliable peers. The φ = 20 implicit
trust model reflected an ability to bias interactions away from
untrustworthy peers through its greater sensitivity to change
in any players behavior. This contributed heavily to the
models behavior and performance in the shown experiment.

D. Average Numbers of Repeated Interactions

In the following experiment, we examine the average
number of repeated game interactions per generation. While
many agents will choose not to interact for any games, of
those who do, we will evaluate the average number of games
they decide to play with each other.

From the experiment shown, we can identify the increase
in repeated game interactions between peers over successive
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Fig. 5. Average Number Of Repeated Interactions

generations throughout all interaction models. Again our im-
plicit models behave similarly to the explicit trust benchmark
model. The implicit trust models show a similar ability to
interact repeatedly with selected, more trusted peers quite
quickly. The φ = 20 implicit trust model showed a strong
ability to bias repeated interactions towards more trusted
peers. Such behavior stems from this models heightened
sensitivity to change in an opponents behavior. This con-
tributed significantly to the φ = 20 implicit trust model’s
behavior throughout all our experiments. Participating in
many repeated interactions with a limited set of reliable peers
offers a distinct advantage to any interaction model and is
fundamental to gaining a competitive advantage.

VII. CONCLUSIONS

In the previous section, we presented a number of specific
experiments. From the results shown, we have identified
some of the primary characteristics of implicit trust mod-
els. In our experiments, we have demonstrated that agent
interactions can be biased successfully through implicit trust.
The experiments assessing average levels of cooperation
show all interaction models achieving similar high levels
of average cooperation and fitness. In the case of both
implicit and explicit trust, this is due to their success in
biasing agent interactions away from any unreliable peers.
The main characteristics of implicit trust are three fold.
Firstly, as shown in our experiments our implicit trust models
rapidly identify unreliable peers and reduce interactions with
them. Secondly, implicit trust significantly increases repeated
interactions with peers whom it believes are more reliable
and cooperative. Finally we are satisfied that the effect of
changing the TD value with respect to previous interactions
encourages players to act cooperatively in order to ‘cash in’
on higher TD payoffs. Because of this phenomenon, players
can mutually benefit from successive cooperative gestures,
culminating in a defection, to gain the benefit of the increased
TD payoff. This is more pronounced in the implicit φ = 20
model as TD can be rapidly increased and availed of by

the agents in some alternating manner. The effect of this
behavior results in an increase in the average fitness without
a noticeable increase in average cooperation throughout the
model. This three way benefit contributes significantly to the
performance of our implicit trust models.

In the context of previous research, investigating agent
interaction models such as tagging schemes, each of our
models performed well. While our agent interaction models
are significantly different to previous tagging models, our
results reflect similar levels of fitness to those identified by
Riolo[11]. In his evolved tag bias model, Riolo outlines his
hypothesis that, when a population is dominated by mutual
cooperation or defection, agents loose their ability to bias
interactions based on tags as they are no longer effective for
biasing interactions. This remains partially true in the case of
our implicit trust model. In some evolutionary environments,
where total cooperation or defection is widespread, agents
may no longer bias their interactions using specific game
offers. We also consider the case where agents are directly
affected by the actual game payoffs within each game, in
which they choose to participate. This stems primarily from
the alternative game payoffs on offer within the implicit trust
model. We hope to explore this in more detail throughout
future work.

Through proposing this alternative trust model, we hope to
have achieved a proof of concept and somehow augmented
existing research involving trust in multi-agent systems. Pre-
viously proposed models solely use forms of ‘explicit trust’,
which are predominantly strategy level trust metrics, which
bias agent interactions regardless of specific utility offers.
Situational trust may be the most closely related model to
implicit trust but can still be classified as an explicit model,
as it is represented exclusively at agent strategy level. Our
proposed trust model is a tentative exploration of a new game
and strategy space which has not previously been explored.
This new agent interaction model draws from a number of
areas, such as economic game theory. One of these closely
related topics is the area of duopolies. This is the study
of corporate trading relationships with respect to splitting
of market shares through respective production levels and
pricing.

In our future work, we hope to extend our search of
our strategy space through more advanced evolutionary ap-
proaches. We also hope to conduct more varied simulations
of implicit trust using variations of our current definition.

VIII. SUMMARY

In this paper we have proposed the concept of implicit
trust. We have outlined our motivations for examining this
theory. These stemmed from real world examples and also
previous research in the domains of trust and multi-agent sys-
tems. We have explicitly defined an interpretation of implicit
trust, which included explicitly defining the game constraints.
We have outlined a game environment and a possible strategy
set from which we have conducted a series of simulations of
this game. Through these preliminary experimental results,
we have shown that implicit trust can be successfully used to



bias agent interactions. We have compared its characteristics
with that of explicit trust and identified certain similarities
and differences between the models. One of the most notable
differences was the emergence of a phenomenon similar to
meta-cooperation. Finally we have proposed some future
experiments through which we hope to gain a greater un-
derstanding of implicit trust and the reasons for its success
in the experiments we have described.
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