
���������
	�� ���	 ��� ���������� ��	����� �����! �"��#$��%'&

(*),+�-/.102+4365 7�)�8:9'7;( <4=�>�?,@A>�B*@DC!E�EFC!E"G

H I J:K�L M�NOM PDQ RTS U V U/WTQXPDWZY J[I \'U PFQ ] U"I U;RTNO\
H K_^`PDWZN�RTS Y M J:I a RTS U,NbW c V U/WTJ�R�PDWdM e M�NfI ^

g J:eih Y J[I jkM l g Pma U"K

npokqsrutvtfwyx{zs|~}p����t��������
�{op�����Xru����������wyx{zs|~}p����t��������

�����~������������ �¡�¢£��¤¦¥�§�¨�¥�©«ª¬��� ~�����¯®±°�°�¨�¨�¨²ª¬���«ªv¡�¢£��¤¦¥~§�¨¦¥�©¯ª¬���~°



Analysis of the performance of
Genetic Algorithms and their Operators

using Kauffman’s NK Model.

SeamusHill, Colm O’ Riordan
Dept.of InformationTechnology,

NUI, Galway

Abstract

Thispaper outlinestheoperators andoperations of Ge-
netic Algorithms, and Kauffman’s NK model. To analyse
theperformanceof geneticalgorithmsandtheir operators
the fitnesslandscape is crucial. Kauffman’s NK modelis
usedto carry out analysis of theperformanceof a genetic
algorithm and its crossover and mutationoperators. Fu-
turework which mayextendfromthis includeusingtheNK
model to: analysetheperformanceof the inversionopera-
tor; assistthedevelopmentof codingschemes;analysereal
world problemsin orderto assistin selectingoptimumrates
for operators,andstudyingadaptiveratesfor operators.

1 Introduction

The book Adaptation in Natural and Artificial Systems
written by John Holland, presentsGenetic Algorithms
(GA’s) as an abstraction of biological evolution and
presents a theoretical framework which canbeadopted for
GA’s [3]. According to Holland, the GA is a methodof
moving from onepopulation of bit stringswhich represent
creatures or possiblesolutions to a problem, to a new
population,usingselectionalongwith crossover, mutation
andinversionoperators.

Given an optimisation problem, the set of possible
solutions to this problem canbeencoded usingstringsof a
fixed lengthformed from somefinite sizedalphabet. This
encoding generatesa representation space,which is a high
dimensional spaceof all possiblestrings of a particular
length, eachof which encodes a possiblesolution to the
problem. The effect of the choice of operatorsusedand
their associatedratehasbeena topic of muchdebate and
research.

To develop a theory regarding the choice of specific

geneticoperators(e.g. the inversion operator) to include
in a GA andthe rateat which they shouldbe set,a model
suchasKauffman’s NK modelcanbeusedto analysetheir
performance. This is becausethestructureof afitnessland-
scapedependsontheunderlyingproblem,anddevelopinga
theory aboutoperatorsandtheir probability ratesshould be
independentof thestructure of the landscape.To this end,
Kauffman’s NK model provides a problem independent
landscape, asthefitnesslandscape canbegradually turned
from smoothto rugged.

2 An Overview of Genetic Algorithms

GeneticAlgorithms (GAs) aresearchalgorithms based
on themechanics of natural selectionandnatural genetics.
They are a combination of survival of the fittest among
string structures,and a structuredyet randomisedinfor-
mation exchangeto form a searchalgorithm which has
intelligentsearchqualities.With eachgeneration,anew set
of artificial creatures(strings)arecreatedusingpartsof the
fittestof theold; combinedwith somenew parts.Although
randomised,geneticalgorithms efficiently exploit histor-
ical information to speculatesimple searchpoints with
expectedimproved performance. GA’s can be classified
as a group of computational models inspired by natural
evolution. A potential solution to a particularproblem is
encodedona datastructuresimilar to a chromosome.Each
chromosomeconsistsof a number of “genes” (e.g. bits),
with eachgenebeing an instanceof a particular “allele”
(e.g., 0 or 1). Recombination operators are applied to
this binarystring so asto preserve critical information. A
GA commenceswith a population of typically randomly
generatedchromosomes. The selectionoperator chooses
which chromosomesin the population will be allowed to
reproduce. The chromosomesare allocatedreproductive
opportunitiesin a way that chromosomeswhich represent
a bettersolutionto thetarget populationaregivena higher
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chance to “reproduce” than those chromosomeswhich
have achieved lower fitness evaluations It also decides
how many offspringeachchromosomecanhave with fitter
chromosomes having a greaterchanceto produce more
offspring.Thefitnessof asolutionis typically definedwith
respectto thecurrent population.

Following selectionthe crossover operator exchanges
sub-parts of two chromosomes,normally with a prob-
ability rate typically between85% and 90%, this can
be compared to biological recombination betweentwo
single-chromosome organisms and can be viewed as
sexual recombination found in nature. The crossover
operator randomly chooses a locus and exchangesthe
partsof thestringsbeforeandafterthat locus betweentwo
chromosomes to createtwo offspring. For example, the
strings10000100 and11111111 couldbecrossedover
after the third locus in eachto produce the two offspring
10011111 and11100100.

The mutation operator changes randomly the values
of a locationon the chromosome.It randomly flips some
of the bits in a chromosome. For example, the string
00000100 might be mutatedin its secondposition to
yield 01000100. Mutationcanoccurat eachbit position
in a string with someprobability, usuallyvery small (e.g.,
0.001) [9].

Theorderin whichgenesarearrayedin thechromosome
canberearrangedby theinversionoperator, which reverses
the order of a contiguous section the chromosome[8].
Mostmethodscalled“GAs” havethefollowing elementsin
common: populationsof chromosomes,selectionaccording
to fitness,crossover to producenew offspring,andrandom
mutation of new offspring.

3 Operator Overview

Reproduction combined with Crossover provide GA’s
with the bulk of their processingpower. Mutation on
the otherhandplaysa secondary role in the operation of
genetic algorithms. It is neededbecause,“eventhoughre-
productionandcrossover effectively searchandrecombine
extant notions, occasionallythey maybecomeoverzealous
andloosesomepotentiallyuseful geneticmaterial(1’s or
0’s at particular locations). In artificial geneticsystems,the
mutation operator protectsagainst such an irrecoverable
loss. By itself, mutation is a random walk through the
string space.Whenusedsparingly with reproduction and
crossover, it is an insurance policy against premature loss
of important notion” [2]. Goldberg also notes that the
frequency of mutation to obtain goodresultsin empirical

GA studiesis “on the orderof onemutationper thousand
bit (position) transfer”.

4 The Fitness Landscape

4.1 Bit strings and Hamming distance

To describe fitnesslandscapes,a notion of a distance
betweengenotypesis needed. Genotypesarecodings,and
different codings can causedifferent distancemeasures.
Anotherpoint is thatoftentherearemorethanonedistance
measure, or metric, which canbe defined for oneandthe
samecoding. Usually, a codingin the form of bit strings
is used.TheHamming distancebetweentwo bit stringsis
definedasthe number of corresponding positionsin these
bit stringswherethe bits have a different value. So, the
distancebetween010and100is two, becausethefirst and
secondpositionshavedifferentvalues. A normalisedHam-
ming distancecan be defined by dividing the Hamming
distancebetweentwo bit stringsby the lengthof thesebit
strings.By adopting this approach,thedistancemeasureis
independentof the lengthof the bit strings. A normalised
Hamming distanceof 0.5, for example, meansthathalf the
bits of two bits stringhavea differentvalue[5].

4.2 The Genotype Space

If thepossiblesolutionsfor agiven problemareencoded
by someform of genotype, then the problem spacecan
alsoberepresentedby a genotypespace.A genotypespace
is the spacein which eachpoint representsonegenotype
andis next to all otherpoints that have a distanceof one
from this point (according to someappropriatemetric i.e.
theHammingdistance). All the points at distanceoneare
calledthe neighboursof this first point, andtogether they
formaneighbourhood, i.e. considerasgenotypesbit strings
of length3. The total number of bit stringsof this length
is ³¦´ = 8. With theHamming distanceasmetric,every bit
stringof lengththreehasexactly threeneighbours,namely
thosebit stringsthat differ in oneof the threebits. Every
point in thespacerepresentsonegenotypeandhasexactly
threeneighbours,eachof which differs in thevalueof one
bit [5].

4.3 The Fitness Landscape

The ideaof a fitnesslandscape is usedasa framework
for thinking about evolution. Biological organisms can
be characterisedby their genotype, which is the genetic
“encoding” of the organism,or their phenotype,which is



the actualform andbehaviour of the organism. A fitness
value canbeassignedto eachphenotype,which denotesits
ability to survive andreproduce. Evolution canbeviewed
asa process that searches,by meansof geneticoperators
like crossover andmutation, a fitnesslandscape of possible
genotypes, looking for genotypes that encodehighly fit
phenotypes. Put another way, evolution searches for
solutions,encodedin genotypes,for theproblemof finding
fit organisms that are capable of reproduction. Every
genotype will have a relative fitnessassignedto it. This
is determined by a fitnessfunction. The fitnesslandscape
is then constructed by assigningthe fitnessvaluesof the
genotypes to the corresponding points in the genotype
space.To visualisethis picture considereachpoint in the
genotype spacebeing given a “height” according to its
fitness. From this a “mountainous” landscape is formed,
wherethe highestpeaks designatethe bestsolutions. A
local optimum, or peak, in such a landscapeis defined
asapoint thathasahigherfitnessthanall its neighbours[4].

To summarise, thestructureof a landscape incorporates
many things, such as the number of neighbours each
point in the genotype spacehas, the number of peaks,
the “steepness” of the hillsides, the relative heightof the
peaks, etc. A landscape wherethe averagedifference in
fitness betweenneighbouring points is relatively small,
is calledsmooth. On sucha landscapeit will be easyto
find good optima aslocal informationaboutthe landscape
canbe usedeffectively to direct the search. A landscape
with a relatively large average fitnessdifference between
neighbours, is called rugged. On such a landscape it
will be difficult to find goodoptima, in otherwords local
information becomeslessvaluable. So, the global struc-
ture of a landscape can rangefrom very smoothto very
rugged.Thestructureof a fitnesslandscapedependson the
underlying problem. But a theory about population flow
should be independentof that. It would therefore be con-
venienttohaveaproblemindependentfitnesslandscape[5].

5 NK Model

5.1 Description of the NK Fitness Model

“We needa real theory relatingthe structure
of rugged multipeaked fitnesslandscapesto the
flow of a populationuponthoselandscapes. We
donotyethavesucha theory.”

—StuartA. Kauffman

Stuart Kauffman devised the “NK fitnessLandscape”
model to explore the way that epistasis controls the

“ruggedness”of an adaptive landscape. He wanted to
specify a family of fitness functions whose ruggedness
couldbe ‘tuned’ by a singleparameter. This wasachieved
by building up multiple ‘atoms’ of maximalepistasis.The
NK model is a stochasticmethodfor generating a fitness
function F: µ 0,1¶O·�¸,¹»º on binarystrings ¼�½¾µ�¿ÁÀ�Â�¶�· ,
wherethegenotype ¼ consistsof N loci, with two possible
allelesat eachlocus ¼ÄÃ . It hastwo basiccomponents: a
structure for geneinteractions, and a way this structure
is used to generate a fitness function for all possible
genotypes. The gene interactionstructureis createdas
follows: the genotype’s fitnessis the average of N fitness
componentscontributedby eachlocus.Eachgene’s fitness
component ÅkÃ is determinedby its own allele, ¼¯Ã , andalso
the allelesat K otherepistaticloci (thereforeK must fall
between0 andN - 1). TheseK otherloci couldbechosen
in any number of ways from the N loci in the genotype.
Kauffmaninvestigatedtwo different alternatives: adjacent
neighbourhoods, wherethe K genes nearestto locus i on
thechromosomearechosen; andrandom neighbourhoods,
where theseK other loci are chosenrandomly on the
chromosome. In the adjacentneighbourhood model, the
chromosomeis taken to have periodic boundaries,so that
the neighbourhood wrapsaround the otherendwhenit is
neartheterminus[1].

Epistasisis implemented through a “House of Cards”
model of fitnesseffects, in otherwords,whenever anallele
is changed at one locus, all of the fitness components
with which the locus interactsare changed, without any
correlation to their previousvalues.Thus a mutationin any
of thegenesaffectinga particular fitnesscomponentis like
pulling a cardoutof ahouseof cards- it tumblesdown and
must be rebuilt from scratch,with no informationpassed
on from the previous value. Kauffman implemented this
by generating,for eachfitnesscomponent,a tableof ³¯Æ�º²Ç
numbers for eachallelic combination for the (K+1) loci
determining thatfitnesscomponent.Thesenumbersarein-
dependentlysampledfrom a uniform distribution on [0,1].
The consequenceof this individual resamplingof fitness
componentsis thatthefitnessfunction developsconflicting
constraints: a mutation at onegenemay improve its own
fitnesscomponent,but decreasesthe fitnesscomponentof
another genewith which it interacts.Also, if the allele at
another interacting locuschanges,an allele that hadbeen
optimal may no longer be optimal. Therefore, epistatis
interactions provide “frustration” in trying to optimiseall
genessimultaneously [1].

The NK modelwas introducedby Kauffman to have a
problem independentmodel for constructing fitnessland-
scapesthatcangradually betunedfrom smoothto rugged.
The main parametersof the model are N, the number of



genes in the genotype, i.e. the length of the strings that
form thepointsin thelandscape, andK, thenumberof other
genesthatepistaticallyinfluencea particular gene(i.e., the
fitnesscontribution of eachgeneis determinedby thegene
itself plus K othergenes)[5]. K setsthe level of epista-
sis by determining the dependencethe partial fitnessof a
gene at locationn hason thegenesin a neighbourhoodof
K otherlocations.Theneighbourhoodmaybeat theK lo-
cationsnearestto n in thegenotypeor a setof K locations
randomly pickedfrom anywhereon thegenotype. Follow-
ing this a seriesof N lookup tablesarethengenerated,one
for eachgenelocationin thegenotype.Eachtablehas³¯Æ�º²Ç
random entriesin theinterval (0,1). Thefitness,Å ·ÈÆ , of a
particular genotypeis calculatedby thefunction:

Å ·ÈÆ
É ÂÊ ·Ë
Ì¦Í Ç
ÎÐÏ ¼ÄÑ

wherethe partial fitnessf(n) is obtained from the nth
lookup table using the valuesof the genesin location n
andits neighbourhoodasthe lookup key [7]. Below is an
example to illustrated the calculationof

ÎÐÏÓÒ Ñ with N=8,
K=2. In this example n = 011, whenthetableis referedtoÎÐÏÓÒ Ñ is shown to be0.432809.

Neighbourhood of n
| |

Genotype: 1 0 0 0 1 1 0 0

nthLookupTable
0 0 0 0.724367
0 0 1 0.123989
0 1 0 0.987432
0 1 1 0.432809
1 0 0 0.987234
1 1 0 0.349566
1 1 0 0.274095
1 1 1 0.521926

6 Experiment Design

To attempt to analysethe performanceof a genetic
algorithm usingKauffman’s NK model, it wasdecidedto
usethe simplegenetic algorithm asoutlinedby Goldberg
[2]1.

1A C-languageImplementation of a Simple Genetic Algorithm has
beenwritten by RobertE. Smith (The University of Alabama),David E.
Goldberg (TheUniversity of Illino is) andJeff A. Earickson(AlabamaSu-
percomputer Network).

6.1 Simple Genetic Algorithm (SGA)

Theprogramis C-languagetranslationandextension of
theoriginal PascalSGA codepresentedby Goldberg. The
SGA-C is intended to be a simple program for first-time
GA experimentation. It is not intended to be definitive in
termsof its efficiency or thegraceof its implementation.

6.2 The NK Model

The implementation2 of the NK modelusedis limited
to NK landscapes of N=32 and K=31 or smaller. If the
preloadoptionin initModel is true,theentirelandscapewill
be constructed during the initialization phase. A preload
optionof falsewill causethelandscapeto beconstructedon
the fly. Constructingthe landscape on the fly is necessary
for large values of n andk dueto the memory required to
storethe entire landscape. The model constructsrandom
tables, which grow exponentially as K increases. That
is ³¦Æ�º²Ç rows and N columns. The evalString routine
evaluates the fitness of a binary string chromosome of
length 32 or smaller. A value between0 and 1 will be
returned.

This NK-landscapeproblem generator modelsthe idea
presented by StuartA. Kauffman [6]. The user inputs a
binary chromosomeof lengthN. Eachgenemakesafitness
contribution basedon its allele (1 or 0) and the allele of
K othergenes. Thefitnesscontributionsaredrawn from a
uniform distribution ranging from 0.0to 1.0. Thefitnessof
a chromosomeis the averagefitnessof the genesat all N
loci.

Thelandscapecharacteristicsareasfollows; whereK=0
there is a single peak and the fitnes of strings is highly
correlated with Hamming distance. WhereK=N-1 there
are many sub-optimal peaksand the fitnessof strings is
uncorrelatedwith Hammingdistance. As both K and N
increse,an increasing numberof fitnesspeaksfall towards
themeanfitnessasaresultof conflictingconstraintsamong
thegenes.

7 Experiment Execution

To conduct the experiment the fitnessfunction of the
SGA-C was replacedby the NK-Landscape generator.
This allows for a problem independentmethodof testing
the performanceof the SGA-C over various landscapes.

2A C language implementation of Kauffman’s NK model called the
NK-landscapeproblemgenerator hasbeenwritten by Mitchell A. Potter,
andis available at http://www.cs.gmu.edu/mpotter/nk-generator/



By allowing various ratesof crossover and various rates
of mutation to be passedto the genetic algorithm, it is
possibleto plot thefitnessratesfor eachgenerationat each
particular rate of crossover and eachrate of mutationfor
thevarious levelsof complexity whichranged from 0 to 31.
The experiment wasconductedin two parts,the first, was
to discover the fitnesslevels for various crossover rates.
The secondpart, involved discovering the fitnessratesfor
differentmutationrates.Bothpartsalsoincludedlandscape
altertation.

During the experiment the GA was run 5 times with
a population size of 200 for 200 generationsand a fixed
lengthchromosomeof 32 anda fixed random seed. Also
for the first set of experimentsthe level of mutation was
fixed at 0.001%, while for the secondset of experiments
thelevel of crossover wasfixedat 80%. In first experiment
the rate of crossover varied fron 0.00 to 100% with 5%
increments. Druing the secondexperiment the level of
mutation wasincreasedfrom 0.001%to 0.511%at intervals
of 0.01%.

8 Results

8.1 Crossover

Resultsof the first experiment with varying rates of
crossover indicatethat on average, higher ratesof fitness
areobtained on lesscomplex landscapes.This is illustrated
in figure 1 which plots the average best fitnessfor each
landscape with crossoverfixedat 90%.
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Figure1: Graphfor Crossoversetto 90%with K ranging
from 0-31

The results also show that as the rates of crossover
increasesodothefitnesslevels(seefigure2 with K setto 0,

andfigure3 with K setto 31). In otherwords, statistically
higher fitnesslevels were achieved at the higher ratesof
crossover, that is between85% and95%. The number of
generationsalso hasan effect on the fitnesslevels as the
ratesof crossover change. Increasesin the best fitness
levels appearas generation numbers increase. However,
in theseexperiments 200 generations appearsatisfactory
as increasesin the number of generations provided little
increasein fitnesslevels.

Best Fitness for changing Crossover rates [pop=200 gen=200 runs=5]
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Figure2: Graphfor K setto 0 andN setto 32

Best Fitness for changing Crossover rates [pop=200 gen=200 runs=5]
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Figure3: Graph for K setto 31andN setto 32

8.2 Mutation

In the secondexperiment wherethe ratesof mutation
arealtered,resultsshow that increasing ratesof mutation
arenot associatedwith higherfitnesslevels. (Seefigures4
and5). The number of generationsandthe crossover rate
hasa greatereffect whencombined with mutationon the
fitnesslevels. Therefore, it seems,illustrating that lower
levels of mutation areaseffective, but have the additional
advantagesof beingcomputationallylessexpensiveaswell



asreducing therisk of destroying existingfitter schemas.

Best Fitness for changing Mutation rates with crossover fixed at 0.80 [pop=200 gen=200 runs=5]
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Best Fitness for changing Mutation rates with crossover fixed at 0.80 [pop=200 gen=200 runs=5]
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It is interestingto notethatat lower levelsof generations
mutation ratesappear to have more influenceon the best
fitnesslevels,but asthenumberof generationsincrease,i.e.
100 generationsplus, the differencein bestfitnesslevels
areminor.

The resultsalso indicate that the highest averagebest
fitnessrateswereobtainedwith lower mutationrates,with
the mutationrateof 0.001% achieving the highest(figure
6), illustratingthatthereis little benefit,if any, in increasing
theratesof mutationabove thelower ratesi.e. 0.001% and
0.010.
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9 Conclusion and Future work

To conclude the resultsof the experiments appear to
indicatethat theSGA algorithmandits operators function
properly at high ratesof crossover andlow ratesof muta-
tion.

Futurework includesconducting moreexperimentson
crossover and mutation using rateswhich have returned
the best resultsfrom experimentsto date. Thesewould
include crossover experiments with a number of other
muataion rates such as 0.002%, 0.005% and 0.008%,
and mutation experiments with crossover rates of 85%,
90% and 95%. By conducting these experiments the
best rangefor crossover and mutationratesover the full
range of landscapes(K from 0 to 31) may converge on
the theoretical optimum rates, that is crossover of 85%
to 90% and mutation of 0.001%, therebyindicating the
successfulnessof thegeneticalgorithmbeinganalysed.

Additional experimentsmayinclude thefollowing:

Õ the addition of an inversion operator to the algorithm
andstudying its effects;

Õ mapping new problems, when developing coding
schemesattentionmay be paid to the degreeof epis-
tasisamongstgenes(andsetsof genes)which will al-
low asuccessfulcodingschemetobedevelopedi.eone
thatconformswith GoldbergsBuilding Block Hypoth-
esis, i.e. Goldberg [2] arguesthat thepower of a GA
lies in beingableto find good building blocks. These
building blocks areschemataof shortdefininglength
consistingof bits thatwork well together, andtendto
improve performance whenincorporatedinto a crea-
ture.A successfulcoding schemeencouragesbuilding



blocks to form by ensuringthat, (I) relatedgenes are
closetogetheron the chromosome,while (II) thereis
little interaction betweengenes.

Õ researchinto the mapping of real world problems
to landscapes with a given complexity/difficulty (i.e
known measureof epistasis)to assist in selecting
theoptimum ratesfor various operatorsfor particular
typesof problems;

Õ studying adaptive rates, for example if the position
on a landscape determines the mutation rate then
the algorithm may be designedto usevarying rates
of mutationas the landscapechanges, andmay also
indicatea stopingcondition.
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