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Abstract

This paper outlinesthe operatars and operations of Ge-
netic Algorithms, and Kauffman’s NK model. To andyse
the performanceof geneticalgorithmsandtheir opeators
the fitnesslandscae is crucial. Kauffman’'s NK modelis
usedto carry out andysis of the performanceof a genetic
algarithm and its crosswer and mutationopemtors. Fu-
ture work which mayextendfromthis includeusingthe NK
mode to: analysethe performarce of theinversion opera-
tor; assistthe develgpmentof codingschemesandysereal
world problemsn orderto assistin selectingoptimunrates
for opemators, andstudyingadaptive ratesfor opemators.

1 Introduction

The book Adaptationin Natural and Artificial Systems
written by John Holland presentsGenetic Algorithms
(GA's) as an abstraction of biologcal evolution and
presets a theaetical framewnork which canbe adoged for
GA's [3]. Accoding to Holland the GA is a methodof
moving from onepopuation of bit stringswhich represen
creatues or possible solutionsto a prodem, to a new
population, usingselectionalongwith crosseer, mutation
andinversionoperatos.

Given an optimisation prablem, the set of possible
solutiors to this prodem canbe encode usingstringsof a
fixed lengthformed from somefinite sizedalphdet. This
encaling generates representatio spacewhich is a high
dimersional spaceof all possiblestrings of a particular
length eachof which encoas a possiblesolutionto the
problem. The effect of the choie of opeatorsusedand
their associatedate hasbeena topic of much debae and
research

To develop a theory regading the choice of specific

geneticopentors(e.g. the inversion opegtor) to include
in a GA andtherateat which they shouldbe set,a model
suchasKauffman’s NK modelcanbe usedto analysetheir

perfamane. Thisis becasethestructureof afitnessland-
scapalepadsontheunderlying prodem,anddevelopinga

theoly aboutoperdorsandtheir prokability ratesshoud be

independentof the structue of thelandscape.To this end,
Kauffmans NK model provides a prodem indepgendent
landscap, asthe fitnesslandscap canbe gradually turned
from smoothto rugged.

2 An Overview of Genetic Algorithms

GeneticAlgorithms (GAs) are searchalgorithns based
on the mechaits of natual selectionandnatual genetics.
They are a combiration of survival of the fittest amory
string structures,and a structuredyet randmised infor-
mation exchangeto form a searchalgaithm which has
intelligentsearchyualities.With eachgereration,anew set
of artificial creatues(strings)arecreatedusingpartsof the
fittestof theold; combiredwith somenew parts.Although
randmised, geneticalgoithms efficiently exploit histor
ical information to speculatesimple searchpoints with
expectedimproved perfamance. GA's can be classified
as a groyp of computational mocels inspired by natural
evolution. A poterial solutionto a particularprodem is
enco@don adatastructuresimilarto achronosome Each
chranosomeconsistsof a numter of “genes” (e.g. bits),
with eachgenebeing an instanceof a particdar “allele”
(e.g, 0 or 1). Recombimtion opertors are applied to
this binary string so asto preseve critical information. A
GA comnenceswith a population of typically randanly
geneated chrom@somes. The selectionoperato chocses
which chronbsomesin the popuation will be allowed to
repraduce. The chronbsomesare allocatedreprodictive
opportunitiesin a way that chrom@someswhich represent
a bettersolutionto the target populationaregivena higher



charte to “reproduce” than those chranosomeswhich
have achieved lower fitness evaluations It also decides
how mary offspringeachchronosomecanhave with fitter
chranosoms having a greaterchanceto produce more
offspring. Thefitnessof a solutionis typically definedwith
respecto thecurren population.

Following selectionthe crosseer opeator exchanges
sub-m@arts of two chranosomes,normally with a prab-
ability rate typically between85% and 90%, this can
be compmared to biological reconbination betweentwo
single-©iromesome organisms and can be viewed as
sexud recombnation found in nature. The crosseer
opeator randbmly chooses a locus and exchangesthe
partsof the stringsbeforeandafterthatlocus betweerntwo
chranosoms to createtwo offspiing. For exanple, the
strings10000100 and11111111 couldbe crossedver
after the third locusin eachto prodice the two offspiing
10011111 and11100100.

The mutation opeator charges randanly the values
of a locationon the chranosome. It randanly flips some
of the bits in a chranosome For example, the string
00000100 might be mutatedin its secondposition to
yield 01000100. Mutationcanoccurat eachbit position
in a string with someprohability, usuallyvery small (e.g.,
0.001)[9].

Theorderin whichgenesarearrayedn thechromsome
canberearangedby theinversionoperato, which reverses
the order of a cortiguous sectionthe chranosome|8].
Mostmethalscalled“GAs” have thefollowing elementsn
comnon: popuationsof chramosoms, selectioraccordng
to fithess,crosswer to producenew offspring,andrancom
mutatian of new offspring.

3 Operator Overview

Reprodation combired with Crosseer provide GA's
with the bulk of their processingpower. Mutation on
the otherhandplays a secondry role in the opeation of
geretic algorithms. It is neededhecause;eventhoughre-
productionandcrosseer effedively searchandreconbine
extart notiors, occasionallythey may becomeoverzealous
andloosesomepotentially usefu geneticmaterial(1's or
O’s at particdar locatiors). In artificial geneticsystemsthe
mutation opeator protectsagairst such an irrecoverable
loss. By itself, mutationis a rancdom walk through the
string space. Whenusedsparindy with reprodiction and
crosseer, it is aninsurarce policy aganst premaure loss
of important notion” [2]. Goldbeg also notesthat the
frequengy of mutation to obtan goodresultsin empiical

GA studiesis “on the orderof one mutationper thousand
bit (positior) transfet.

4 TheFitness Landscape
4.1 Bit stringsand Hamming distance

To descrile fithesslandscapesa notion of a distance
betweergenotypesis needed Genotygsarecodirgs, and
different codirngs can causedifferent distancemeasures.
Another pointis thatoftentherearemorethanonedistance
measurgor metric, which canbe definel for oneandthe
samecoding Usually, a codingin the form of bit strings
is used. The Hammirg distancebetweertwo bit stringsis
definedasthe nunber of corresponding positionsin these
bit stringswherethe bits have a different value. So, the
distancebetweer010and100is two, becausehefirst and
secondositionshave differentvalues. A nomalisedHam-
ming distancecan be definal by dividing the Hamnmning
distancebetweentwo bit stringsby the lengthof thesebit
strings. By adoptirg this appoach,the distancemeasuras
independentof the lengthof the bit strings. A homalised
Hammirg distanceof 0.5 for examgde, meanghathalf the
bits of two bits string have a differentvalue[5].

4.2 The Genotype Space

If thepossiblesolutionsfor a given prodem areencoed
by someform of genotype, then the prodem spacecan
alsoberepresetedby a genotype space A gendypespace
is the spacein which eachpoint represent®ne genotype
andis next to all otherpointsthat have a distanceof one
from this point (accordng to someapprgriate metrici.e.
the Hammingdistance) All the poirts at distanceoneare
calledthe neightours of this first point, andtogeher they
formaneighbouhood i.e. corsiderasgenotyesbit strings
of length3. The total numbe of bit stringsof this length
is 2% = 8. With the Hammirg distanceasmetric, every bit
string of lengththreehasexactly threeneighlours,namely
thosebit stringsthat differ in one of the threebits. Every
poirt in the spacerepresentsonegerotypeandhasexactly
threeneigtbours,eachof which differs in the valueof one
bit [5].

4.3 TheFitnessLandscape

The ideaof a fitnesslandscap is usedasa frameawork
for thinking about evolution.  Biological organisms can
be characterisedy their gendype, which is the genetic
“encading” of the organism, or their pherotype, which is



the actualform andbehaiour of the organism. A fitness
value canbeassignedo eachphendype,which dendesits
ability to survive andreprodice. Evolution canbe viewed
as a procsss that searchesby meansof geneticoperatos
like cross@er andmutatian, a fithesslandscap of possible
gerotypes, looking for gerotypesthat encodehighly fit
phenotypes. Put anothe way, evolution searchs for
solutiors, encaledin genotyes,for the problemof finding
fit organismsthat are capalle of repoduction. Every
gerotype will have a relative fitnessassignedo it. This
is deternined by a fitnessfunction. The fitnesslandscap
is then constrieted by assigningthe fitnessvaluesof the
gerotypesto the correspading poirts in the gendype
space. To visualisethis picture considereachpoint in the
gerotype spacebeing given a “height” accordimy to its
fitness. From this a “mountainows” landscap is formed,
wherethe highestpeals designatethe bestsolutions. A
local optimum, or peak, in sucha landscapes defined
asapoint thathasahigherfitnessthanall its neigtbours [4].

To summaise, the structureof a landscap incorporates
mary things, such as the numkbker of neigtbours each
poirt in the gerotype spacehas, the numter of peals,
the “steepnas” of the hillsides, the relative height of the
peals, etc. A landscap wherethe averagediffererce in
fitness betweenneighbouing points is relatively small,
is called smooth. On sucha landscapet will be easyto
find goad optima aslocal information aboutthe landscap
can be usedeffedively to directthe search. A landscap
with a relatively large averag fithessdifference between
neighbouss, is called rugged. On such a landscap it
will be difficult to find goodoptima,in otherwordslocal
information becaneslessvalualle. So, the global struc-
ture of a landscap canrangefrom very smoothto very
rugged. Thestructureof afitnesslandscapelependson the
uncerlying prodem. But a theory abou popuation flow
shoud be indepemnlentof that. It would therebre be con-
verientto haveaproblemindepenlentfitnesdandscapés].

5 NK Mode
5.1 Description of the NK Fitness M odel

“We needa real theoy relatingthe structue
of ruggel multipealed fithesslandscapeso the
flow of a population uponthoselandscaps. We
donotyethave suchatheoy.”

—StuartA. Kauffman

Stuart Kauffman devised the “NK fitness Landscap®
mockl to explore the way that epistasis contrds the

“ruggedness”of an adapive landscape. He wanted to
specify a family of fithess functions whose ruggedness
couldbe ‘tuned’ by a singleparameterThis wasachiered
by building up multiple ‘atoms’ of maximalepistasis.The
NK modelis a stochastionethodfor geneating a fitness
fundion F:{0,1} ¥ — R* onbinarystringsz € {0,1}",
wherethe genotye z consistsof N loci, with two possible
allelesat eachlocus z;. It hastwo basiccompments: a
structue for geneinteractiors, and a way this structure
is usedto geneate a fitness function for all possible
gendypes. The geneinteractionstructureis createdas
follows: the gendype’s fitnessis the average of N fitness
commnentscontritutedby eachlocus. Eachgenes fitness
commnentF; is determired by its own allele, z;, andalso
the allelesat K otherepistaticloci (therefore K mustfall
betweerD andN - 1). TheseK otherloci couldbe chosen
in ary nunber of ways from the N loci in the genotye.
Kauffmaninvestigatedwo different alternatves: adjacent
neigtbourhads wherethe K geres nearesto locusi on
the chronosomeare chosen andrandan neighlourhoals
where these K other loci are chosenrandmly on the
chranosome. In the adjacentneigtbouhood model, the
chranosomeis takento have periodc boundaries,so that
the neighlwurhad wrapsarowund the otherendwhenit is
nearthetermirus[1].

Epistasisis implemerted throwgh a “House of Cards”
mockl of fithesseffects, in otherwords,wheneer anallele
is changd at one locus, all of the fithess compaments
with which the locus interactsare changd, without ary
corrdation to their previousvalues.Thus a mutationin ary
of the genesaffectinga particula fithesscompnentis like
pulling a cardout of a houseof cards- it tumdesdown and
must be rekuilt from scratch,with no information passed
on from the previous value. Kauffman implemened this
by geneating, for eachfitnesscompnent,a tableof 2 £+1
nurbers for eachallelic combiration for the (K+1) loci
deternining thatfithesscompament. Thesenunbersarein-
depewently sampledfrom a uniform distribution on [0,1].
The conseqgenceof this individual resamplingof fithess
compnentsis thatthefitnessfunction develogps conflicting
constraims: a mutatian at one genemay improve its own
fitnesscompament, but decrasesthe fithesscompament of
anotter genewith which it interacts. Also, if the allele at
anotter interactirg locus changs, an allele that had been
optimd may no longer be optimal. Therebre, epistatis
interactions provide “frustratiori’ in trying to optimiseall
genessimultaneasly[1].

The NK modelwasintrodwed by Kauffmanto have a
prodem independentmodel for constructig fithessland-
scapeghatcangradially be tunedfrom smoothto rugged.
The main paranetersof the modelare N, the numker of



geresin the genotye, i.e. the length of the stringsthat
form thepointsin thelandscapgandK, thenumker of other
geresthatepistaticallyinfluencea particdar gene(i.e., the
fitnesscontritution of eachgeneis deternined by the gere

itself plus K othergenes)[5]. K setsthe level of epista-
sis by deternining the depadencethe partial fithessof a
gere at locationn hason the genesin a neighbouhood of

K otherlocations. The neigtbourtood may be at theK lo-

cationsnearesto n in the genotype or a setof K locatiors
rancmly picked from arywhere on the genaype. Follow-

ing this a seriesof N lookup tablesarethengenersed, one
for eachgendocationin thegenotype. Eachtablehas2 ¥ +1

rancom entriesin theintenal (0,1). Thefitness,F vk, of a
particdar genotyeis calculatedy thefunction:

LN
Fne =+ > f(@)
n=1

wherethe partial fitnessf(n) is obtaned from the nth
lookup table using the valuesof the genesin locationn
andits neighlouriood asthe lookup key [7]. Below is an
exanple to illustratedthe calculationof f(n) with N=8,
K=2. In thisexamge n = 011, whenthetableis referedto
f(n) isshavntobe0. 432809.

Nei ghbour hood of n
| |

Gendype:l 1[0[O0JO0J1[1][0]0|

nth Lookup Table

0| 0| 0.724367
0.123989
0.987432
0.422809
0.987234
0.30566
0.274095
0.521926
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6 Experiment Design

To attemptto analysethe perfamanceof a geretic
algoithm using Kauffmans NK model, it was decidedto
usethe simple geneic algorithm asoutlined by Goldbeg
[2]*.

1A C-language Implementgion of a Simple Genetc Algorithm has
beenwritten by RobertE. Smith (The University of Alabama),David E.
Goldbeg (The University of lllinois) andJef A. Earickson(AlabamaSu-
percompugr Network).

6.1 Simple Genetic Algorithm (SGA)

Theprogamis C-langwagetranslationandextensio of
the origind PascalSGA codepreseted by Goldberg. The
SGA-C is intenced to be a simple program for first-time
GA expeaimentation It is not intended to be definitive in
termsof its efficiengy or thegraceof its implementation.

6.2 TheNK Model

The implemenatior? of the NK model usedis limited
to NK landscaps of N=32 and K=31 or smaller If the
prelcadoptionin initModel is true, theentirelandscap will
be construted during the initialization phase. A prelaad
optionof falsewill causehelandscap¢o beconstrictedon
thefly. Constructingthe landscap on thefly is necessary
for large values of n andk dueto the memoy required to
storethe entire landscape. The modé constructsrancbm
tables, which grov exponentially as K increases. That
is 2K+1 rows and N columms. The evalString routine
evaludes the fitness of a binary string chromsome of
length 32 or smaller A value between0O and 1 will be
returred.

This NK-landscapeprodem geneator modelsthe idea
presentd by StuartA. Kauffman [6]. The userinputs a
binarly chranosomeof lengthN. Eachgenemalkesa fitness
contibution basedon its allele (1 or 0) andthe allele of
K othergeres. Thefitnesscontritutionsaredravn from a
uniform distributionrangng from 0.0to 1.0. Thefitnessof
a chromsomeis the averagefitnessof the genesat all N
loci.

Thelandscapeharateristicsareasfollows; whereK=0
thereis a single peak and the fitnes of stringsis highly
corrdated with Hammirg distance. Where K=N-1 there
are mary sub-opimal peaksand the fithessof stringsis
uncarelatedwith Hammingdistance. As both K and N
increseanincreasig nunber of fithesspeaksfall towards
themearfitnessasaresultof conflictingconstraintamory
thegenes.

7 Experiment Execution

To conduct the experimentthe fitnessfunction of the
SGA-C was replacedby the NK-Landscap geneator
This allows for a prodem indepelent methodof testing
the perfomanceof the SGA-C over various landscapes.

2A C languageimplemenation of Kauffman's NK model called the
NK-lands@apeproblem gengator hasbeenwritten by Mitchell A. Potte,
andis available at http://www.cs.gmu.edumpotterhk-geneator/



By allowing various ratesof crosseer and variows rates
of mutationto be passedto the geretic algoithm, it is
possibleto plot thefitnessratesfor eachgeneationat each
particdar rate of cross@er and eachrate of mutationfor
thevarious levelsof compleity whichrange from 0 to 31.
The expaimentwas condictedin two parts,the first, was
to discover the fitnesslevels for various crosseer rates.
The secondpart, involved discovering the fitnessratesfor
differentmutationrates.Both partsalsoincludedlandscap
altertation

During the experiment the GA was run 5 times with

a popuation size of 200 for 200 gererationsand a fixed
lengthchranosomeof 32 anda fixed randan seed. Also
for the first setof expeiimentsthe level of mutation was
fixed at 0.0Q1%, while for the secondset of experiments
thelevel of crosswer wasfixedat 80%. In first expeiment
the rate of crosswer varied fron 0.00 to 100% with 5%
increnents. Druing the secondexpeiiment the level of
mutation wasincreaedfrom 0.00L%to 0.511% atintenals
of 0.01%.

8 Results
8.1 Crossover

Resultsof the first expetiment with varying rates of
crosseer indicatethat on averaye, highe ratesof fitness
areobtainal onlesscompex landscapesThisis illustrated
in figure 1 which plots the averag bestfitnessfor each
landscap with crosseerfixedat 90%.

Best Fitness for changing Crossover rates
078 T T T

T T
Best Fitness —+—

Best Fitness

L L L L
0 5 10 15 20 25 30

0.68 L L

Landscapes K0-K31

Figurel: Graphfor Crossersetto 90%with K rangng
from 0-31

The results also shav that as the rates of crosswer
increaesodothefitnesslevels(seefigure 2 with K setto 0,

andfigure 3 with K setto 31). In otherwords, statistically
higher fitnesslevels were achiesed at the higher ratesof

crosseer, thatis between85% and 95%. The numter of

geneationsalso hasan effect on the fitnesslevels as the
ratesof cross@er charge. Increasesin the bestfitness
levels appearas generatio nunbersincrease. However,

in theseexpaiments 200 geneations appearsatisactory
as increasedn the numkber of generatios provided little

increasen fitnesslevels.

Best Fitness for changing Crossover rates [pop=200 gen=200 runs=5]
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Figure2: Graphfor K setto 0 andN setto 32

Best Fitness for changing Crossover rates [pop=200 gen=200 runs=5]
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Figure3: Gragh for K setto 31 andN setto 32

8.2 Mutation

In the secondexpeaiment where the ratesof mutation
are altered,resultsshowv that increasiig ratesof mutation
arenot associatedvith higherfitnesslevels. (Seefigures4
and5). The numter of gererationsandthe crosswer rate
hasa greatereffed when combired with mutationon the
fithesslevels. Therefae, it seemsillustrating that lower
levels of mutatian are as effective, but have the addtional
adwartagesof beingcompuationallylessexpensve aswell



asredwing therisk of destrging existing fitter schemas.

Best Fitness for changing Mutation rates with crossover fixed at 0.80 [pop=200 gen=200 runs=5]
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Figure4: Graphfor K setto 0 andN setto 32

Best Fitness for changing Mutation rates with crossover fixed at 0.80 [pop=200 gen=200 runs=5]
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Figure5: Graphfor K setto 31 andN setto 32

It is interestingo notethatatlower levelsof geneations
mutatian ratesapper to have moreinfluenceon the best
fitnesdlevels,but asthe nurmberof generatiosincreasei.e.
100 geneationsplus, the differencein bestfitnesslevels
aremina.

The resultsalso indicate that the highest averagebest
fitnessrateswereobtaired with lower mutationrates,with
the mutationrate of 0.00P4 achiezing the highest(figure
6), illustratingthatthereis little benefit,if ary, in increasing
theratesof mutationabove thelowerratesi.e. 0.0026 and
0.010.

Best Fitness for changing Mutation rates
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Figure6: Graphfor Mutationsetto 0.001%with K rangng
from from 0-31

9 Conclusion and Future work

To conclule the resultsof the expeiments apper to
indicatethatthe SGA algorithmandits operdors fundion
properly at high ratesof crosswer andlow ratesof muta-
tion.

Futurework includes condicting more expeimentson
crosseer and mutation using rateswhich have returred
the bestresultsfrom experimentsto date. Thesewould
include crossw@er expeiments with a numker of other
muataia rates such as 0.0026, 0.00%%6 and 0.008%,
and mutation experiments with crosseer rates of 85%,
90% and 95%. By condicting these expetiments the
bestrangefor crosseer and mutationratesover the full
range of landscapes(K from 0 to 31) may corverge on
the theoretich optimum rates, that is cross@er of 85%
to 90% and mutation of 0.00L%, therebyindicating the
successfulnesof the geneticalgorithmbeinganalysed.

Additional experimentsnayinclude thefollowing:

e the additin of aninversion opeator to the algoiithm
andstudyng its effects;

e mappng new problems, when developing codng
schemesattentionmay be paid to the degreeof epis-
tasisamangstgeneqandsetsof geneswhich will al-
low asuccessfutodirg schemeo bedevelopedi.e one
thatconformswith GoldbegsBuilding Block Hypah-
esis i.e. Goldkerg [2] aguesthatthe power of a GA
lies in beingableto find god building blocks These
building blocks are schemataf shortdefininglength
consistingof bits thatwork well togetter, andtendto
improve performane whenincorporatedinto a crea-
ture. A successfutodng schemencairageshuilding



blocks to form by ensuringthat, (I) relatedgene are
closetogetheron the chranosomewhile (I1) thereis
little interaction betweergenes.

researchinto the mapping of real world problems
to landscaps with a given comgexity/difficulty (i.e
knowvn measureof epistasis)to assistin selecting
the optimum ratesfor various opaatorsfor particular
typesof prablems;

studyirg adaptve rates, for exanple if the position
on a landscap determires the mutation rate then
the algotithm may be designedto use varying rates
of mutationas the landscapechangs, and may also
indicatea stopingconditian.
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