
���������
	�� ��
�	 ��� ��
�������� ��	�����
 �����! �
"��#$��%'&

(*),+�-/.102+4365 7�)�8:9'7;( <4=�>�?,@A>�B*@DCFEGC!H�H"E

I JLKNM�O PRQTS U�VRUWJLK Q:X Y JZX[X\Q*] JDPRQ�VRU_^L` a U[X�V�`/PbU[K c
O `6d�e K Ugfih `6j

k�lnmporqts�urv�wyx{z}|�~�m������������� l������}q���or������wyx{z}|�~�m������������

����������� ����¡�¢�£r¤¥� ¦¨§�©�ª�§�«­¬®� � ¯������±°³²�² ªrª�ª´¬®� �­¬�£r¤¥� ¦¨§�© ª¨§�«±¬®����²



Non-Traditional CollaborativeFiltering Techniques

JosephineGriffith
Dept.of InformationTechnology

NUI, Galway
josephine.griffith@nuigalway.ie

ColmO’Riordan
Dept.of InformationTechnology

NUI, Galway
colmor@geminga.nuigalway.ie

Abstract

Collaborative filtering producesrecommendationsfor
someactive user using the ratings of other users, where
theseusers havesimilar preferencesto the activeuser. It
differs to traditional retrieval and filtering systemswhich
return itemsto someuserbasedon a comparisonbetween
thecontentcontainedin items(documents)andthecontent
of a userquery(informationneed).

Manyauthorshaveviewedcollaborativefiltering froma
statisticalpointof view andnumerousstatisticaltechniques
havebeenapplied(includingmeansquaredifference, Pear-
soncorrelation,Spearmancorrelationandtechniquesfrom
probability theory),with goodsuccess,to collaborativefil-
tering domains. Early collaborative filtering systems,as
well as manycommercial systemstoday, usea statistical
approach to calculatea correlation betweenusers. How-
ever, a largebodyof workexistson theapplicationof other
techniquesand approachesin a collaborativefiltering do-
main, includingBayesiannetworks,dependencynetworks,
aspectmodelsandclustering. Thispaperreviewsa number
of thesetechniques.

1 Intr oduction

Thispaperreviewstheareaof collaborativefiltering and
describessomenon-traditionalcollaborative filtering ap-
proachesthathavebeenusedto date.

Givena setof users,a setof items,anda setof ratings,
collaborativefiltering systemsattemptto recommenditems
to usersbasedon prior ratingsof the users. The collab-
orative filtering systemessentiallyautomatesthe “word of
mouth” process.Theassumptionuponwhich collaborative
filtering is basedis that humanpreferencesarecorrelated
andthuspredictionis possible.

Theproblemspacecanbeviewedasa matrixconsisting
of the ratingsgivenby eachuserfor itemsin a collection,
i.e., thematrix consistsof a setof ratings µ�¶¸· ¹ , correspond-
ing to the rating given by user º to an item » . Using this

matrix, the aim of collaborative filtering is to predict the
ratingsof a particularuser, º , for oneor moreitemsprevi-
ously not ratedby that user. The traditionalcollaborative
filtering paradigminvolvesa centralisedapproachwhereby
usersregisterwith oneparticularsystemandprovideratings
for items(explicitly, implicitly or both).

A numberof issuesarisewith respectto collaborativefil-
tering. Theseinclude,choosingthebestmethodto predict
preferences;evaluatingtheeffectivenessof thepredictions
made;analysingthe theoreticalunderpinningsof collabo-
rative filtering techniquesand justifying the assumptions
madeby the variouscollaborative filtering approachesas
well asdealingwith knowncollaborativefilteringproblems.

The paperoutline is as follows: firstly an overview of
collaborativefiltering is given,togetherwith a summaryof
thetraditionalapproachto collaborativefiltering. Section3
detailsa numberof “non-traditional”approaches.Conclu-
sionsarepresentedin Section4.

2 History, IssuesandTraditional Approaches

2.1 History

A numberof researchershave investigatedtheconstruc-
tion of usermodelsbasedon stereotypeswherebya stereo-
type is a collectionof datawhich typifies a classof users.
Rice[36] definesstereotypesasa meansof makinga large
numberof assumptionsabout a user basedupon only a
smallnumberof observations,andshepioneeredtheuseof
stereotypesin theGrundysystemfor recommendingbooks
to users.

In general,usermodellinghashadalonghistoryin many
computersciencedomains.Traditionally, usermodelswere
createdbasedon evidencefrom explicit useractions;there
hasbeena gradualchangein thisapproachandnow thefo-
cus is on building usermodelsusing implicit information
gleanedfrom the user’s interactionwith a system. User
modellingtechniquesareusedin thedomainof information
managementwheretechniquesareusedto ascertainagiven



usersinformationneedwith theaim of providing morerel-
evantandpersonalisedinformationto thatuser.

Goldberg [17] coinedthe term Collaborative Filtering
andwasthefirst to publishdetailsof a collaborative filter-
ing techniquein his descriptionof the Tapestryemail fil-
teringsystem.This systemallowedusersto annotatedoc-
umentswith their opinionsof thedocuments.Userscould
specifymail filteringqueriestoselectinterestingdocuments
basedon the documentcontentandthe documentannota-
tions. Thesystemwasnot automaticandreliedon usersto
manuallyidentify similar usersandto selectrecommenda-
tions.

Resnick[35] introducedautomatedcollaborative filter-
ing for a system(GroupLens) which providedpersonalised
predictionsfor Usenetarticles.A neighbourhood-basedal-
gorithm, using PearsonCorrelationto createneighbours,
was used. Shardanandand Maes [38] developeda mu-
sic recommendersystem(Ringo) using constrainedPear-
soncorrelationto calculateusercorrelations.Neighbour-
hoodswereselectedbasedonafixedthreshold.Predictions
weregeneratedbasedonaweightedaverageof ratingsfrom
all usersin a neighbourhood.The BellcoreVideo recom-
mender[23] alsousedPearsonCorrelation.

Collaborative filtering techniqueshave been success-
fully applied to several domains on the Internet, e.g.
www.amazon.com,www.cdnow.com.

Recentadvanceswithin the field of collaborative filter-
ing have focusedon the applicationof clusteringanddata
mining techniquesandon the combinationof contentand
collaborativefiltering techniques.

2.2 CollaborativeFiltering Issuesand Metrics

A numberof issueswith respectto collaborativefiltering
exist including:

1. Voting: Thedatasetmaybepopulatedusingexplicit
ratings,implicit ratingsor both. Explicit ratingscan
beobtainedusinga gaugesetor by allowing theuser
to selectthe itemswhich they will rate. Implicit rat-
ings are obtainedby inferencesfrom user actions.
Ideally, asmany ratingsaspossiblearerequiredfrom
eachuserandfor this reasonexplicit ratingsareusu-
ally notsufficientontheirownasusersarenotwilling
to investa largeamountof their time in ratingmany
items. Implicit ratingsmaynot beasaccurateasex-
plicit ratings. Ratingscan be recordedas absolute
values(binaryor within somerange)or asa relative
orderingof items.

2. Data Set: sparsityis a recognisedproblemwith col-
laborative filtering datasets. Issueswith respectto
the dataset include: the sparsityof the matrix and

any assumptionsthataremadewith respectto miss-
ing valuesand noise (and the validity of theseas-
sumptionsandapproaches);the sizeof the dataset
andany dimensionreductiontechniquesthatareper-
formedandtheeffectthesetechniqueshaveonresults
aswell asefficiency considerations.

3. Algorithms : numerouscollaborative filtering algo-
rithmshavebeenproposedandtested.Theseinclude
model-basedapproaches,memory-basedapproaches,
machinelearning approaches,statisticaland prob-
abilistic approachesand list ranking approachesas
well asapproacheswhich combinecontentwith col-
laborative information.Variousalgorithmshave also
beenusedasapre-processingstep.

4. Efficiency: dueto thetypically largesizeof collabo-
rativefiltering datasets,efficiency considerationsare
importantandmaymeanthatcertainapproachesare
not viable. It is importantthat usersreceive recom-
mendationsfrom a systemin a timely manner.

5. Cold-start problem: this problem occurswhen a
new useror a new item is addedto the dataset on
whichno,or very little, dataexists.

6. one-of-a-kind problem: this problemoccurswhen
there is someuserwho is not similar to any other
usersin thedataset.

7. Results: recommendationscanbepresentedto auser
in a numberof ways, the most commonbeing to
presentonerecommendationfor a particularitem or
presenta list of rankedrecommendations,e.g. top-N.

Theability of a systemto provide quality recommenda-
tions is the main measureof effectivenessusedin collab-
orative filtering systems.Intermediatestepswithin a par-
ticular approachcould alsobe evaluated,for example,the
quality of the neighbourhoodformedin nearest-neighbour
approaches.The main metricsusedto testthe predictions
producedare:

¼ coverage: a measureof the ability of the systemto
providearecommendationonagivenitem.

¼ accuracy: a measureof thecorrectnessof therecom-
mendationsgeneratedby thesystem.

Coverageis usually computedas a percentagefor the
items for which the systemwas able to provide a recom-
mendation. Accuracy metricsmay be broken down into
statisticalaccuracy metricsanddecisionsupportaccuracy
metrics. Statistical accuracy metrics are usually calcu-
latedby comparingthe ratingsgeneratedby the systemto
user-provided ratings. The accuracy is usually presented
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asthemeanabsoluteerrorbetweenratingsandpredictions
[38]. Root meansquarederror and correlationmeasures
betweenratingsandpredictionscanalsobe used. Sarwar
et al. [8] claim that thesemetricstrackeachotherclosely.
Decisionsupport accuracymetrics provide a measureof
theability of thesystemin a decisionsupportenvironment.
Typically, the valueof the rating is not that important—it
is moreimportantto know if the rating is a goodor a bad
rating.Metricswhichcanbeusedinclude:ROCsensitivity
whichis measuredby plottingsensitivityagainst(1 ½ speci-
ficity). Sensitivityis the probability of a good item being
returnedby thesystemassuch,specificityis theprobability
of a poor item beingaccuratelyidentified.Weightederrors
andreversalratemayalsobeconsidered.

2.3 Traditional Approaches:Memory-based
Techniques

Memory-basedtechniquesarethemostcommonlyused
approachin collaborative filtering. The title “memory-
based”is attributedto thesesetof techniquesdueto thefact
that the datasetof userpreferencesmustbe kept in mem-
ory as it is accessedfor eachprediction/recommendation
made.Themajority of memory-basedtechniquesareuser-
user techniquesthough some item-item techniqueshave
alsobeeninvestigated.Griffith andO’Riordan[20] give a
detailedoverview andempiricalanalysisof memory-based
techniques.

Memory-basedtechniquesprovideasimpleandintuitive
approachto collaborativefilteringandarewidelyused.Dis-
advantagesinclude:

¼ Recommendationsareslow to respondto changesin
a userprofile.

¼ They could be seento be theoreticallyweak in that
the choiceof thresholdfor neighbourhoodselection
affects the recommendationresultsbut it is difficult
to ascertainthe optimal thresholdvalue. Also the
similarity is basedonly on theknown featuresin the
dataset.

¼ Thecorrelationbetweentwo userprofilescanonly be
computedbasedon itemsthatbothusershaverated.

¼ The correlationapproachinducesoneglobal model
of similarities betweenusers, rather than separate
modelsfor classesof ratings(e.g., positive vs neg-
ative ratings).

¼ To overcomeproblemswith the sparsityof the data
setandthesizeof thedataset,someform of prepro-
cessingmay be required. Singularvaluedecompo-
sition (SVD) is onepossibleapproach.Using SVD,
theinitial matrixcanbedecomposedinto 3 matrices:

¾�¿�ÀgÁ­ÂÄÃ
whereU and V are composedof or-

thonormalvectorsthat defineleft andright singular
valuesof A.

Á
is a diagonalmatrix. The highest Å

singularvaluesaremaintainedtogetherwith thecor-
respondingrows andcolumnsin

À
and

Â Ã
. From

thesethreereducedmatrices,
¾ÇÆ

anapproximationof
theoriginal matrix

¾
canbederived. A detailedde-

scriptionis availablein [4, 12].

¼ Therearescalabilityissuesasthedatasetincreases.

3 Non-Traditional Approaches

3.1 Description

Typicalor “traditional” collaborativefilteringalgorithms
usestandardstatisticalmeasuresto calculatethesimilarity
betweenusers(meansquaredifference,pearsoncorrelation
etc.).Suchtechniques,alongwith othersimilarity measures
suchasvectorsimilarity, belongto thecatrgoryof memory-
basedapproaches.

Within the groupingof “non-traditional” approachesa
largesetof approacheshave beeninvestigated.Probability
theoryhasbeenused[33] to calculatethe probability that
usersareof thesametype.

Otheralgorithmsconstructa modelof underlyinguser
preferencesfrom which predictionsareinferred.Examples
include Bayesianmodels[6]; dependency networks [22],
aspectmodels[24, 25], horting[1], clusteringmodels[39]
andmodelsof how peoplerateitems[33].

Collaborative filtering hasalsobeencastasa machine
learningproblem[3, 5, 31, 15], asa list-rankingproblem
[15] andasa dataminingproblem[1, 30]).

SVD hasbeenusedto improvescalabilityby dimension-
ality reduction[5, 37]. This sectiongivesan overview of
thesemany “non-traditional” approachesto collaborative
filtering.

3.2 Probability Theory

Pennocket al. [33] proposepersonality typesasanap-
proachto collaborative filtering. A personalitytype is en-
codedas a vector of the user’s “true” ratingsfor titles in
thedatabase.Given theuser’s known ratingsof items,the
probabilityof otherusershaving thesamepersonalitytype
iscomputed;thentheprobabilitythattheuserwill likesome
new item is computed.This approachthereforetriesto ac-
quirea modelof usersandgroupsof usersto giveaninitial
ideaof neighbourhoods.Traditionalcollaborative filtering
techniquescould thenbe used. Thusit could beseenasa
form of pre-processing.However, from a practicalpoint of
view, usersmaynotbewilling to giveexplicit ratings.
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3.3 Model-basedApproaches

Breeseet al. [6] describeanapproachwhereBayesian
networks canbeusedto createamodelbasedona training
setwhereeachnodecorrespondsto an item andthe states
for eachnodecorrespondto the possiblerating valuesfor
eachitem. After training,eachitemin theresultingnetwork
will have a setof parentsthatarebestpredictorsof its rat-
ings. Eachconditionalprobabilitytableis representedby a
decisiontreeencodingtheconditionalprobabilitiesfor that
node. Over the experimentsperformed,the Bayesiannet-
work approachperformedaswell ascorrelationmethods.
Bayesiannetworkshave typically smallermemoryrequire-
mentsandallow for fasterpredictionsthanamemory-based
approach[6]. However, atrainingphaseis requiredthatcan
betime consuming.It wasalsoshown thatwhenthereare
relatively few ratings,Bayesiannetworksperformlesswell.
Bayesiannetworksmayprovepracticalfor environmentsin
which knowledgeof userpreferenceschangesslowly with
respectto the time neededto build the modelbut arenot
suitablefor environmentsin which userpreferencemodels
mustbeupdatedrapidlyor frequently.

Heckermanet al. [22] usedependencynetworks asan
alternative to Bayesiannetworks. The graphof a depen-
dency network is potentiallycyclic (unlike a Bayesiannet-
work) andtheprobabilitycomponentof a dependency net-
work, like a Bayesiannetwork, is a setof conditionaldis-
tributions,onefor eachnodegivenits parents.They evalu-
ateddependency networksandBayesiannetworkson three
datasetsand usedthreemetrics: the accuracy of the rec-
ommendations;the predictiontime (time taken to createa
recommendationlist givenwhatis knownaboutauser);and
thecomputationalresourcesneededto build theprediction
models.In general,resultsshowedthatBayesiannetworks
are slightly more accuratethan dependency networks but
dependency networks aresignificantly fasterat prediction
andrequiresubstantiallylesstimeandmemoryto learn.

Horting is a graph-basedtechniquein whichnodesrep-
resentusersand edgesbetweennodescorrespondto the
notion of predictability [1]. Predictionsare producedby
traversingthegraphto nearbynodesandcombiningtherat-
ingsof thenearbyusers.Hortingdiffersfromnearestneigh-
bour approachesas the graph may be traversedthrough
otherusers/nodeswho have not ratedthe item in question,
thus exploring transitive relationshipsthat nearestneigh-
bour algorithmsdo not consider. A predictionfor item »
for userº canbecomputedasweightedaveragescomputed
via a few reasonablyshortdirectedpathsjoining multiple
users. Eachdirectedpath will connectuser º at one end
with anotheruser Å who hasrateditem » . In [1], using
syntheticdata,horting producedbetterpredictionsthan a
nearestneighbouralgorithm.

Hofmann[24] proposesanaspectmodel–a latentclass

statisticalmixture model–for associatingword-document
co-occurrencedata with a set of latent variables. Hof-
mannet al. [25] apply the aspectmodel to user-item co-
occurrencedatafor collaborative filtering. A latent class
variable,ÈÊÉ�Ë ¿ÍÌÏÎÏÐ�Ñ Ñ Ñ�ÐyÌ�Ò is associatedwith eachobser-
vation. Theassumptionis that Ó (setof persons)and Ô (set
of objects)are independent,conditionedon È . The main
motivation behindthe introductionof the latent variablesÈ is to explain the observed preferencesby somesmaller
numberof typicalpreferencepatternswhichareassumedto
underliethedatagenerationprocess(thecardinalityof È is
smallerthanthenumberof itemsin thedocument,thus È is
usedasa“bottleneck”variablein predictingitems).

Browning andMiller [7] testtwo statistical modelling
approaches—Naive Bayes Model and Latent (variable)
clustermodel. They claim that suchapproachesare not
affectedby missingfeaturesand that the complexity has
“limited” dependenceon the datasetsize. However, such
approachesassumefeatureindependencewhich is not nec-
essarilyvalid in the collaborative filtering domain. They
thenpresenta “statisticalmodelling” approachto the col-
laborativefiltering task—they view thetaskasoneof learn-
ing a maximumentropy (ME) model [26]. The general
idea is when only partial information aboutpossibleout-
comesexist, probabilitiesshouldbe chosenso asto max-
imise the uncertaintyaboutthe missinginformation. Sev-
eralapproachesto ME learningcanbeusedincludingiter-
ative scalingand its extensions(asusedin [7]). The ME
modelhasbeenusedin a varietyof tasksincludingnatural
languagemodelling,classificationandinferencetasks. In
experiments,usingtheF1measure( Õ�Ö¥× ØÚÙÜÛ ¶ÞÝ®¶àßyá ÖâØãÙÜÛ®äæåçå× ØãÙèÛ ¶àÝ®¶Þßyá¨é ØÚÙÜÛ®äÚåçå ) and
the MS Web dataset(using285 features),the ME method
achieved betterresultsthannaive Bayesandclustermod-
elsaswell asbetterresultsthanSVMs(discussedlater)and
thePearsoncorrelationmethod.A numberof experiments
wereperformedwhere Ó featureswereselectedasknown
andratingsproducedfor theremainingfeatures.With x = 2
theME methodhadanF1 valueof 0.331,theNaive Bayes
methodgaveavalueof .317,theclustermodelgaveavalue
of .316, the correlationmethodgave a value of .198 and
the SVM approachhadan F1 valueof .197. When Ó was
increasedto 10, all methodsperformedbetterbut the rela-
tive performanceof the approachesstayedthe same. The
ME techniquedoesnot assumefeatureindependenceand
no matrix reductionis required.In addition,theME model
building complexity growsonly with thenumberof known
featurevaluesand/orthenumberof ME constraintsthatare
encoded.However, it could be an inefficient approachif
changesaremadeto thedatasetover time.

4



3.4 Machine Learning

Variousmachinelearningapproacheshave beeninvesti-
gatedsuchasBayesiannetworks (asdescribedin the pre-
vioussection),classification,clusteringandrule-basedap-
proaches.Pre-processingis often carriedout prior to the
machinelearningstage.

In general,classification involves assigningan object
to somedefinedclass. As discussedin the previous sec-
tion, Browning and Miller [7] review the useof a SVM
(supportvector machine)approachwherebyN SVMs are
built—eachonededicatedto thepredictionof a singlefea-
ture.They claimthatevenwith preprocessingtheapproach
is infeasibledueto theeffect missingfeatureswill have on
theaccuracy of predictionsandthecomputationalcomplex-
ity of thelearningtask.

BillsusandPazzani[5] describeatechniquewhichcom-
binesa neuralnetwork coupledwith singularvaluedecom-
position(SVD). A feed-forwardneuralnetwork is created
for eachuser. After training,eachnetwork will mapa vec-
tor (representingan unseenitem) to a predictedrating for
that item for that user. The EachMovie datasetwasused
and“reasonablepredictionaccuracy” wasachieved. This
approachappearstohavetwo majorproblems:theapproach
is inefficientdueto thefactthata neuralnetwork wasused
for eachuser;alsoSVD is computationallyexpensive and
thereis difficulty in knowing thebestdimensionto choose
for thereducedmatrix.

Boosting [16] is a generalset of methodswhich pro-
ducea seriesof classifiers.The training setusedfor each
memberof the seriesis chosenbasedon the performance
of earlierclassifiersin theseries,e.g.,examplesthatarein-
correctlypredictedby previousclassifiersin the seriesare
chosenmoreoften thanexamplesthat werecorrectlypre-
dicted. Thus, a classifieris forced to concentrateon the
difficult examplesin thetrainingset.Two mainapproaches
to boostingarecalledArcing andAda-Boosting.Freundet
al. [15] view collaborative filtering asa list rankingprob-
lemandusea boostingalgorithm,usinga weaklearner, for
collaborativefiltering. Thegoalof thelearneris to produce
a “good” rankingof all items,includingthosenot observed
in training. Resultsshowedthat it outperformedregression
and nearestneighbourapproaches(the nearestneighbour
approachusedfoundonly onemostsimilar userto theac-
tiveuser).

TheEachMovie datasetwasusedwith 61625usersand
1628 movies. For experimentsa subset,ê , of the users
wereselected.Eachuserin ê definedan orderingof the
setof movieslikedby thatuser. For eachtargetuser, 50%
of thesemovies were usedin the feedbackfunction and
50% usedfor testing. Assumingthat eachapproachpro-
ducesa function ë which ordersmovies, four measures
wereusedto test the approaches:disagreement(the frac-

tion of movies mis-orderedby ë ), predicted-rank-of-top
(precisionof the first good movie on ë Æíì list); coverage
(precisionof lastgoodmovie) andaverageprecision(how
good ë is at puttinggoodmovieshigh on the list). Three
experimentswereperformedwherethenumberof features,
densityof feedbackanddensityof featureswerevaried.

With featuresizeof 100, theaverageprecisionof rank-
boostwasapprox.0.475;of nearestneighbourwas0.45and
of regressionwas0.1.

Clustering involvesdividing a heterogeneousgroupof
objectsinto homogeneoussubgroups.In acollaborativefil-
teringdomain,clusteringtechniquescanbeusedto cluster
usersbasedon their similar preferencesor clustersimilar
items.Predictionsfor a userin a clustercanbemadeusing
theratingsof otherusersin thesamecluster.

UngarandFoster[39] investigateda numberof cluster-
ing approacheswhich could be appliedto the problem. A
movie domainis usedandthemodelviews classesof peo-
ple and movies—movie classesareknown, e.g. comedy,
drama,etc.,whereaspeopleclassesareunknown andmust
bederived.Themodelcontainsthreesetsof parameters:

¼ïîñð Åâò theprobabilitya (random)personis in classÅ .
¼ïîñð�ó ò theprobabilitya (random)movie is in classó .
¼ïîñð Å ó ò theprobabilitya personin classÅ is linkedto

a movie in classó .
Clusteringapproachesusedwere: k-meansclustering;re-
peatedclustering(clusteringon clusters);andGibbssam-
pling [2, 9]. Resultsshowedthatall threeapproachesgave
comparableerror rateswhentheclasseshadequalnumber
of membersandin generalresultsdependedon the nature
of the databeingfit. Choosingthe attributeson which to
clusterled to betterperformance.For example,CDs were
clusteredbasedon artist andthe userswerethenclustered
basedon CD clusters.It wasnotedthatrepeatedclustering
mayovercomethedisadvantageof thesparsityproblembut
theapproachalsohasthepotentialto over-generalise.

Lee [29] investigatestwo clusteringapproaches.In the
first approach,it is assumedthateachuseris equallylikely
to belongto oneof ô clustersof usersandthe rating for
eachitem is generatedrandomlyaccordingto a distribu-
tion that dependson the item andthe clusterto which the
userbelongs. In the secondapproacheachuseris again
assumedequally likely to belongto one of ô clustersof
userswhile eachitem is equallylikely to belongto oneofõ clustersof items. The rating for a ö�µ ìr÷rø�Ð º³ù ÷ ô,ú pair
is thengeneratedrandomlyaccordingto a distribution that
dependson the clusterto which the userbelongsand the
clusterto which theitem belongs(similar to [39]). Heuris-
tic algorithmsto approximateBayesiansequentialprobabil-
ity assignmentweredevelopedwherea row columnclus-
tering methodandrow clusteringmethodwerecombined.

5



Experimentswere performedon the EachMovie dataset.
In general,(using averageabsoluteerror), row clustering
performedbetterthanrow columnclusteringand the cor-
relationalgorithm. Thedesignedcombinedalgorithmper-
formedwell for new userswho hadmadevery few ratings
andfor new itemsthathadreceivedvery few ratings.

Mobasheret al. [30] considera web mining domain
wherethey aim to find overlappingaggregateprofilesthat
can be usedby recommendersystemsto provide recom-
mendations. They evaluatetwo web mining techniques:
PACT (profile aggregationsbasedon clustering transac-
tions),which clustersbasedon usertransactionsandasso-
ciation rule hypergraphpartitioning,which clustersbased
on the viewing of a page. The Clique algorithm[34] was
alsousedfor comparison.The techniqueswereevaluated
in termsof thequality of individual profilesgeneratedand
thequality of recommendationswhenthe techniqueswere
integratedwith a “personalizationengine”.Resultsshowed
thatbothtechniquesaresuitablefor webpersonalisation.

O’Connoretal. [32] list threemotivationsfor clustering
itemsprior to usingtraditionalcollaborative filtering tech-
niques:

¼ reducedimensionalityof spaceviaclustering,thusre-
ducingcomputationtime.

¼ increaseaccuracy of predictions.

¼ increasepotentialfor parallelismof task.

Their approachwas to partition the data set (on items)
andthenapplytraditionalcollaborativefiltering techniques
within eachpartition to producerecommendations.They
experimentedwith four differentclusteringalgorithms:av-
eragelink hierarchicalagglomerative [19]; ROCK (robust
clusteringalgorithm for categorical attributes) [21]; and
kMetis andhMetis [28, 27]. Somepreprocessingwasper-
formedandthePearsoncorrelationcoefficient wasusedto
calculatethesimilarity betweenitems.Resultsshowedthat
kMetis was the most promisingof the four clusteringal-
gorithmstested. However in most cases,the accuracy of
recommendationsfor the partitionedmodelwasnot better
thantheaccuracy of recommendationsusingthewholedata
set(unpartitioned).They posit thatthis couldbedueto the
factthatthesimilarity measureusedis basedon ratingdata
rather than contentdata. Also, due to the fact that they
wantedto parallelisethe task, an item could only belong
to one clusterwhereascertainitemsmay have significant
predictivevaluefor a numberof clusters.

Basuetal. [3] developan inductive learning approach
usingRipper[10] which canlearnrulesfrom datawith set-
valuedattributes.Thetestsetusedis fromthemovie recom-
mendationdomain.Pre-processingof thedatasetinvolves
convertingeachuser/movie rating into a tuple of two set-
valuedfeatures:movieslikedby auseranduserswho liked

a movie. Thenotionof like is definedto beany ratingthat
is in the top quartileof the ratingsmadeby a user. In ad-
dition, contentinformationwas addedwherebya set was
createdof movie genreswith threepossiblevalues— com-
edy, dramaandaction.Thefirst experimentusesthefollow-
ing collaborative featuresfor eachmovie: userswho liked
themovie; userswho disliked themovie andmovies liked
by theuser. In generalprecisionwasreasonable(78%)but
therewasalower level of recall(27%)in comparisonto tra-
ditionalcollaborativefiltering techniques—inparticularthe
Recommendersystem[23]. Recommenderachieved 78%
precisionand33% recall. A secondexperimentadded26
contentfeaturesto thelist of collaborativefeatures.No im-
provementsin precisionandrecallwerenoticed(73%and
33%respectively). A furtherexperimentcombinedcollab-
orative with contentinformationrelatingto the genreof a
movie. Thehybrid featuresusedwere: comediesliked by
user;dramaslikedby user;actionmovieslikedby user. In
addition,featuresfor eachgenrewereused:userswholiked
manymoviesof genreû ; userswho likedsomemoviesof
genreû ; userswholikedfew moviesof genreû ; userswho
disliked movies of genre û . With this dataset,precision
andrecallwereincreased(83%and34%respectively).

Nakamuraet al. [31] cast the collaborative filtering
problemas one of learninga binary relation betweenthe
users(rows) and items (columns). Predictionis carried
out by the useof weightedmajority binary predictional-
gorithmswhicharebasedonlearningbinaryrelationsusing
weighted-majorityvoting[18]. Initially, eachuseris related
to eachitem in thedataset.A valueis calculatedfor there-
lationof a userto anitemusinga predictionfunctionor set
of predictionfunctions. In this process,users’preferences
areconsideredto bethelearnttarget function.

Delgado [13] uses a pool of independentprediction
algorithms—onefor eachuser, wherea predictionis made
in eachtrial. The ideais, for someuser, to find othertar-
get functionsthat consistentlybehave in a neutral,oppo-
siteor similarway to theactive targetfunctionthatthesys-
temis trying to learn. Thealgorithmspredictionis a func-
tion of theoriginal targetfunctionanda similarity measure
betweenusers(similarity calculatedusingcorrelationmea-
sure). Several learningtechniquescan be usedto update
weights,themostcommonbeingweightedmajority voting
which updatesweightsonly whenthepredictionis wrong.
Theapproachwasnot testedin [13].

3.5 List Ranking

Freundet al. [15] view collaborative filtering asan or-
deringtask.They usea rankingapproachwheretheoutput
fromacollaborativefilteringsystemis arankingof all items
(peruser)whichaccuratelypredictswhichitemsauserwill
like more or lessthan other items. This list will include
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itemsthattheuserhasnotalreadyrated.
Problemsthat involve orderingand ranking have been

investigatedin variousfieldssuchasdecisiontheory, social
science,informationretrieval andmathematicaleconomics.
The problemof learningto rank is closely relatedto the
I.R. problemof combiningresultsfrom differentsearchen-
gines. A numberof techniquescan be usedto learn the
rankingmodelincluding,classification(usingboosting)as
carriedout in [15]. Cohenet al. [11] alsousea list rank-
ing approach. They develop a framework for manipulat-
ing andcombiningmultiple rankingswith theaim of min-
imising thenumberof disagreementsbetweenrankings.In
their framework, the rankingsare usedto constructpref-
erencegraphsandthe problemis reducedto an optimisa-
tion problemwhich is NP-completeand thus an approxi-
mationis usedto combinethe differentrankings. Results
were reportedin Section3.4 but are difficult to evaluate
asthe methodschosenwith which to compareRankBoost
werenot standardones(i.e.,mostotherapproacheschoose
Pearsoncorrelationasthenearestneighbourapproachwith
which to comparea new technique;this was not donein
[11]).

3.6 Item-basedTechniques

Item–basedtechniques[14, 8] identify relationshipsbe-
tweendifferent items, and then usetheserelationshipsto
computerecommendationsfor users.

Fisk [14] presentsa system MORSE which makes
personalisedfilm recommendationsbasedon information
aboutusers’film preferences.Theapproachtakeninvolves
calculatingthecorrelationbetweenitem » (on which a rec-
ommendationis requiredfor user º ) andall other itemsin
thedataset.Thenfor eachuser Å in thedataset,theratings
givenby º to the N films mostcloselycorrelatedwith » is
plottedagainstratingsgivento thesamefilms by thecurrentÅ . Thebest-fitstraightline is determined.Thecorrelation
betweenº and Å (for the õ films most closely correlated
to with » ) is alsoplotted. Using the samedataset,results
showed that the approachproducedmoreaccuratepredic-
tionsthanPearson-r.

Sarwar et al. [8] looks at the set of items that the
userhas ratedand firstly computeshow similar they are
to the target item º and then selectsÅ mostsimilar itemsü ºèý Ð º Õ Ð Ñ Ñ�Ñ�Ð º áÿþ . At thesametime their correspondingsim-
ilarities

ü ì ¶ ý Ðãì ¶ Õ Ð Ñ�Ñ Ñ�Ðãì ¶�áÿþ are also computed. Once the
most similar items are found the predictionis then com-
putedby takinga weightedaverageof the targetusersrat-
ingson thesesimilar items. Eachitem pair in theco-rated
setcorrespondsto adifferentuser. A numberof approaches
canbeusedto computethesimilarity betweenitemsinclud-
ing:¼ correlation: compute the similarity betweentwo

itemsby calculatingthePearson-rcorrelation.

¼ cosinesimilarity: thetwo itemsarethoughtof astwo
vectorsin the ô dimensionaluser-space. The sim-
ilarity betweenthemis measuredby computingthe
cosineof theanglebetweenthetwo vectors.

¼ adjustedcosinesimilarity: theratingsarenormalised
by subtractingthe useraveragefrom eachco-rated
pairbeforeusingthecosinesimilarity.

Approacheswhichcanbeusedfor predictioninclude:

¼ weightedsum: computesthe predictionfor an itemº for a user µ by computingthe sumof the ratings
givenby theuseron itemssimilar to º . Eachratingis
weightedby the correspondingsimilarity ð ì ¶ Ð » ò be-
tweenitems º and » .

¼ regression: insteadof directly using the ratingsof
similar items,an approximationof the ratingsbased
onaregressionmodelis used.In practicethesimilar-
ities computedusingcosineor correlationmeasures
may be misleadingin the sensethat two rating vec-
torsmaybedistant(in Euclideansense)yetmayhave
highsimilarity. In sucha case,usingtheraw similar-
ity ratingsmayresultin poorprediction.

Two typesof experimentswereperformed: thosetest-
ing the quality of predictionsandthosetestingthe perfor-
manceof the approaches.Threetypesof similarity algo-
rithmsweretested(basiccosine,adjustedcosineandcorre-
lation). Theweightedsumalgorithmwasusedto generate
predictions.Theadjustedcosineshowed lowestMAE and
wasusedin theremainingexperiments(MAE usingthead-
justedcosinemeasurewasapprox0.733; the MAE using
thebasiccosinemeasurewasapprox.0.835andtheMAE
usingthecorrelationmeasurewas0.83approx.).

Resultsshowed that the item-item algorithmsslightly
outperformedaPearsonuser-useralgorithm.With thetrain-
ing set/testsetratiosetat0.5andtheneighbourhoodsizeset
at 30 the item-itemapproachhasan MAE of .749andthe
user-userapproachhasanMAE of .755. Performanceex-
perimentsshowedthat the item neighbourhoodsare“f airly
static” andthuscanbe pre-computedwhich will facilitate
goodonlineperformance.

3.7 Advantagesand Disadvantages

Someof theapproachescouldbeviewedastheoretically
strongerthanneighbourhood-basedapproaches.

Modelling approachesin generalprovide flexibility and
have scaledbestwith largedatasets.Somecanalsohandle
missingvalues.

7



Many of the machine learning techniquesare more
computationallyexpensive that memory-basedtechniques.
However, machinelearningapproachessuffer from being
seenasa “black box” whereit is difficult to explicitly state
whathasbeenlearnt.

Thereis a potentialproblemwith theapplicationof sta-
tistical techniquesdueto thefactthatthesetechniquesmay
requirecertainfeaturesof datato hold andthis maynot be
feasible.For this reason,machinelearningapproachesmay
bemorerobust.

4 Summary and Future Dir ections

Collaborative filtering hasattractedmuchinterestin the
researchdomain since the publication of details of the
Tapestrysystemin 1992 [17]. Collaborative filtering has
beenviewed as a complementaryapproachto traditional
I.R. systemsand many collaborative filtering approaches
havebeenproposed.Earlycollaborativefiltering techniques
usestandardstatisticalmeasuresto calculatethecorrelation
betweenusers.Numerousothertechniqueshave beenpro-
posedto improve on the performanceof thesetechniques
andto try overcomesomeof the problemsinherentin the
collaborativefiltering domain,suchassparsityandhighdi-
mensionality. This paperhasgiven an overview of these
techniques.

Researchin theareahasby no meansreacheda steady-
stateandmuchwork can yet be performedon evaluating
existingapproachesaswell asthepotentialof investigating
new modelsandnew approaches.
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