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Abstract— This paper describesa cultural learning approach
to the evolution of agentsto play the game of connect-bur. Each
agenthasa neural network responsiblefor perceiving the current
board configuration and selecting an appropriate next move.
Populations evolve through population learning, a process of
Darwinian evolution, using geneticalgorithms. Cultural learning
is implemented by selecting highly fit agents as teachers to
instruct the next generation. Teacherscommunicate with pupils
through a hidden layer in each neural network (the verbal
input/output layer) and pupils attempt to replicate utterances
by back-propagation. Experiments are conducted comparing
the performance of populations employing population learning
alone and populations employing both population and cultural
learning.

I. INTRODUCTION

Cultural learningallows populationsto passon knowledge
to the next generationthrough non-geneticmeansthrough
a processof communicationor artifact creation.Populations
employing sucha mechanisnshouldintuitively be inherently
more robust to changingand hostile ervironments.From an
artificial intelligenceperspectie, culturallearningis usefulbe-
causeit providesan interestingalternatie to moretraditional
life-time learningsimulations.

In orderto simulatecultural learning,teachersare selected
from the populationand allowed to instruct the next gener
ation. In this way, importantinformation gainedthroughthe
life-time of the previous generationis not lost andthe fithess
of the entire populationcan be improved. More importantly
no prior solutionknowledgeis requiredto producesolutions,
making cultural learning an ideal candidatefor sequential
decision task solving and an alternatve to reinforcement
learningor test-caseapproaches.

In this paper we chosethe gameof connect-fouras the
sequentialdecisiontask to be solved. While a simple game,
connect-fourequiresthe playerto develop a clearstratgy to
be consistentlysuccessfulln orderto ascertairthe benefitof
cultural learning,an initial setof experimentsare performed
with populationsemploying only Darwinian-basegopulation
learning through the use of genetic algorithms. A second
experimentaddscultural learningto the population.

Some researchhas been undertalen in the evolution of
connect-fourplayersemploying a library of existing games
to train the neural networks by back-propagatiorfl] and
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reinforcementlearning methods[2]. This paperpresentsan
alternatve approachto both.

Theremaindeof this paperis arrangedasfollows: Section2
summariseselatedresearctandbackgroundnaterial.Section
3 discusseshe encodingtechniqueemployed to allow neural
network agentsto play. Section4 presentsthe artificial life
simulator employed to conductthe experiments.Section 5
illustrates the experimentresults. Section 6 concludesand
suggestduture work.

Il. RELATED WORK

The following sectionoutlines some backgroundmaterial
including learningmodelsandthe gameof connect-four

A. LearningModels

A numberof learning modelscan be identified from ob-
senation in nature. These can roughly be classified into
population life-time and cultural learning.

1) Population Learning: Populationlearningrefersto the
processwvherebya populationof organismsavolves,or learns,
by genetic meansthrough a Darwinian processof iterated
selectionand reproductionof fit individuals. In this model,
the learning processis strictly confinedto each organisms
geneticmaterial:the organismitself doesnot contritute to its
survival throughary learningor adaptatiorprocess.

2) Life-time Learning: By contrast,there exist speciesin
naturethatarecapableof learning,or adaptingto ervironmen-
tal changesand novel situationsat an individual level. Such
learning, known as life-time learningis often coupledwith
population-basedearning, but further enhanceghe popula-
tion’s fitnessthroughits adaptabilityandresistanceo change.

Researcthasshownn that the addition of life-time learning
to a populationof agentss capableof achiezing muchhigher
levels of populationfithessthanpopulationlearningalone[3],
[4], [5], [6].

3) Cultural Learning: Culture canbe succinctlydescribed
as a processof information transferwithin a populationthat
occurswithout the use of geneticmaterial. Culture can take
mary forms suchaslanguagesignalsor artifactualmaterials.
Suchinformationexchangeoccursduringthe lifetime of indi-
vidualsin a populationandcangreatlyenhancehe behaiour
of such species.Becausethese exchangesoccur during an



individual's lifetime, cultural learning can be considereda
subsetof lifetime learning.

A numberof approachesvere consideredfor the imple-
mentationof culturallearningincludingfixedlexicons|[7], [8],
emeginglexicons[9], [10], linguistic constraint§11], indexed
memory[12], cultural artifacts[13], [14] and signal-situation
tables[15]. The approachchosenwas the teacher/pupilsce-
nario [16], [17], [8] wherea numberof highly fit agentsare
selectedfrom the populationto act as teachersfor the next
generatiorof agentsPupilslearnfrom teachersy observing
the teachers verbal output and attemptingto mimic it using
their own verbal apparatusAs a result of theseinteractions,
a lexicon of symbolsevolvesto describesituationswithin the
populations environment.

B. ConnectFour

The gameof connect-fouiis a two-playergameplayedon
a vertical boardof 7x6 positionsinto which piecesare slotted
in oneof sevenavailableslots.Eachplayeris givena number
of colouredpieces(one colour per player) and must attempt
to createhorizontal,vertical or diagonalpiece-linesof length
four. Playersplace one piece per turn into one of the seven
slots. The piecethenfalls onto a free positionin the chosen
column, creatingpiles, or towers, of pieces.If a columnis
full, the player must selectan available slot. The two most
popularstratgies are outlined below.
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Fig. 1. Connect-Bur Stratggies

1) OpenLines: The basicpremiseof the openlines strat-
egy, illustratedin the left-handboardin Fig. 1, is to createa
situationwhereawin is inevitableregardles®f any opponens

move. A player must createa line of 3 pieceswith space
available on both sidesof the line. Since the opponentcan
only move onepieceat a time, this situationwill alwayslead
to playervictory.

2) Forced Open Lines: The forced open lines stratgy
follow the samebasic premiseas the openlines strateyy, but
actively forcesthe opponentinto concedingvictory. This is
achivedby placingpiecesin sucha mannerthatthe opponent
must move into a column in order to prevent the player
winning. Once the opponens pieceis in place,its position
allows the playerto completea differentwinning line. This is
illustratedin the right-handboardin Fig. 1.

IIl. GAME ENCODING

In orderfor a populationof neuralnetworks to play games
of connect-foura methodmustbe developedto encodeboth
the boards currentposition and decodethe network’s output
into a valid move.

A. Board Encoding

As the gameof connect-fourconsistsof a simple matrix
with only two typesof piece(the players andthe opponens),
encodingthe currentboardpositionis not difficult. Two bits
are usedfor eachposition on the board, where bit patterns
arechoserarbitrarily as: 00 for emptypositions,01 for player
piecesand 11 for opponentpieces.Each board position is
encodedsequentially creatinga bit string of 84.

B. Move Decoding

Move decodingtakes the network’s outputand determines
the network’s chosenmove. During the preparatiorfor these
experimentstwo decodingschemeswvere considered.

1) Multiple Move Selection: For the multiple move selec-
tion approachan agents neuralnetwork was allowed seven
outputnodesgachrepresenting possiblemove. The network
is shawvn the currentboard position and the strongestoutput
representing valid move is chosenasthe network’s output.

2) Multiple Board Selection: Thesecondapproactchanges
the situation from a choice of moves to a choice of board
positions.The currentboardpositionis taken andthe agents
piecesare addediteratively into eachslot. At eachiteration,
the network is shavn the currentboard position, plus one of
the seven possiblemoves. This time, the neuralnetwork has
only oneoutputnodeandthe boardpositionwith the strongest
output responsas deemedto be the agents preferredboard
position.

IV. SIMULATOR

The experimentsoutlined in this paper were performed
using a previously developedartificial life simulator[18, [5],
[6]. The simulatorallows populationsof neural networks to
evolve using a geneticalgorithm and eachnetwork can also
betrainedduringeachgeneratiorof anexperimentto simulate
life-time learning.

Eachmemberof the populationis in possessiormf both a
phenotype(a neuralnetwork) and a genotype(a genecode).



The genecodeis usedto determinethe individual’s neural
network structureand weights at birth. If the individual is
selectedor reproductionthe genecodeis combinedwith that
of anotherindividual using the processef crosseer and
mutationto producea genotypeincorporatingfeaturesfrom
both parents.

In orderfor this mechanisnto functioncorrectly amapping
of a neuralnetwork structureto a genecodeis required.This
is achiezedusinga modifiedversionof marker basedencoding
which allows networks to develop ary numberof nodesand
interconnectingdinks, giving a large numberof possibleneural
network architecturgpermutations.

Start Marker Node Label Threshold Link to Node Link Weight Link to Node Link Weight End Marker
SM | 5 | 08 | 4 | 083 | 3 | -051 | EM ||

Fig. 2. Marker BasedEncoding

Marker basedencodingrepresentsieuralnetwork elements
(nodesandlinks) in a binary string. Eachelements separated
by a marker to allow the decodingmechanisnto distinguish
betweenthe differenttypesof elementand thereforededuce
interconnection$19], [20], [21].

In this implementationa marker is givenfor every nodein
a network. Following the node marlker, the nodes detailsare
storedin sequentiabrderon the bit string. This includesthe
nodes label and its thresholdvalue. Immediatelyfollowing
the nodes details, is another marker which indicates the
start of one or more node-weightpairs. Each of thesepairs
indicatesa back connectionfrom the nodeto other nodesin
the network along with the connectiors weight value. Once
the last connectionhas beenencodedthe schemeplacesan
endmarler to indicatethe endof the nodes encoding(Fig. 2).
This schemeallows ary numberof hiddenlayersand nodes,
giving greatflexibility for experimentation.

The networks undego variousstageshroughouttheir life-
time. Firstly, the genecodesaredecodedo createtheir neural
network structure. Training is then performed using error
back-propagatiorfor a given numberof iterations (training
cycles). Each network is testedto determineits fitnessand
the populationis ranked using linear basedfitnessranking.
Roulettewheelselectionis employedto generateghe interme-
diate population.Cross@er and mutation operatorsare then
appliedto createthe next generation.

The crossw@er operatoris capableof altering both the
number of links and nodesin a network architecture.In
addition,a structuralmutationoperatorallows nodesandlinks
to be addedor deleted.

A. SimulatingCultural Evolution

In orderto performexperimentgelatedto culturalevolution,
it wasnecessaryo adaptthe existing simulatorarchitecturdo
allow agentsto communicatewith one another This wasim-
plementedusingan extendedversionof the approachadopted
by HutchinsandHazlehurs{22]. Thelasthiddenlayerof each
agents neuralnetwork functionsasa verbalinput/outputlayer

(Fig. 3).

Agent 1

Input Layer

Agent 2

Fig. 3. Agent CommunicatiorArchitecture

At the end of eachgenerationa percentag®f the popula-
tion’s fittest networks are selectedand are allowed to become
teacherdor the next generation.The teachingprocesstakes
placeasfollows: a teacheiis stochasticallyassignedn pupils
from the populationwhere n = t'e\'a";h”ers, where Npop is
the populationsize and Nieachers iS the numberof teachers.
Eachpupil follows theteacheiin its ervironmentandobsenres
the teachers verbal outputasit plays gamesof connect-four
The pupil thenattemptsto emulateits teachers verbal output
using back-propagationOnce the teachingprocesshasbeen
completedtheteacherslie andnew teacherareselectedrom
the new generation.

In orderfor a pupil andteachetto performtheseexchanges,
it is necessaryor themto sharea similar verbalinput/output
layer structure.lt is ohvious, for instance that a pupil with
too few verbal input nodeswith respectto a teachers will
be unableto gain ary adwantagefrom the processof cultural
learning.To counteracthis restriction,pupilsandteachersre
pairedaccordingto their verbalinput/outputlayer compatibil-
ities.

V. EXPERIMENT RESULTS

A populationof 20 agentswere allowed to evolve for 100
generationsAt eachgenerationagentsplay in a tournament
againstall other players. In addition, each agent plays a
minimax player with threelevels of difficulty. In total, each
agentplays 22 gamesof connect-fourin its lifetime. Agents
are assigneditnessaccordingto eachgames result: 3 points
for abothawin anda draw andO pointsfor aloss. This gives
a fitnessrangeof [0,66].

In previouswork by Denaroet al.[17], it wassuggestedhat
theadditionof noiseto ateachers verbaloutputcouldenhance
a populations ability to retainculturally acquirednformation.
This approachwas replicatedin previous experiments[23]
and found to be a valuableadditionto the cultural learning
processTheadditionof culturalnoisehelpsaddmuchneeded



diversity to the population$ lexicon and halts the process
of prematurecornvergence.Intuitively, sinceteachersare not

perfectembodimentof problemsolutions,it is not desirable
for pupilsto becomamereclonesof teacherghatareassigned
to them. By introducingnoise we allow the individuality of

particularagentdo remainpresentvenaftermultiple teaching
iterations.

The culturalmutationparametewassetupto generatenoise
in therange[-0.5,0.5]to the teachers outputwheninstructing
a pupil with probability 0.05. Crosseer was set at 0.6 and
mutationat 0.02.The culturallearningsettingsof teacherratio
andteachingcyclesweresetat 0.1 and 5 respectiely.
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Fig. 4. Multiple Move Selection

Thefirst two experimenteemplogy populationlearningalone
and are designedto determinethe best move-decodingap-
proachas well as the performanceof populationlearning.
The final experimentaddscultural learningto the population.
For the purposesf comparisonthe performanceof a player
employing a randomstratey (i.e. playing randommoves)is
illustratedalongwith the simulationresults.

A. Multiple Move Selection

It is clear from the resultsillustrated in Fig. 4 that the
agentsare indeedevolving to play bettergamesof connect-
four but that this evolution quickly stabilisesat fitnesslevels
of around42. The populationappeardo have stagnatedand
further improvementis unlikely. However, the population$
performancdar outstripsthat of the randomplayer

B. Multiple Board Selection

The seconddecodingstratgly was more successfulFig. 5
shavs both the multiple move and multiple board selection
resultsto betterillustrate the improvement.The populations
have attained a higher level of fitness than the previous
method.In light of theseresults,we employed multiple board
selectiorto conducthefinal experimentinvolving the addition
of culturallearningto the population.

C. Cultural Learning

This final experimentaddscultural learning capabilitiesto
the population.Teachersplay a full tournamentwhile pupils
obsenre, and at eachmave, the teachercorrectsthe pupil’s
perceptionthrough back-propagationThe resultsin Fig. 6
shav that the addition of cultural learning provides the best
performanceandthatthe fitnesslevels shov an upward trend
at the end of the experiment,suggestinghat the populationis
capableof furtherimprovement.
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Fig. 5. Multiple Board Selection

VI. CONCLUSION
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Fig. 6. Cultural Learning

These experiments shav that cultural learning can be
successfullyapplied in populationsof neural networks to
develop stratgies for the gameof connect-fourin addition,
the preliminary experimentsshav that multiple board se-
lection delivers better results than multiple move selection.
Since neuralnetworks are efficient classifiersit is intuitively
preferableto presenta selectionof board configurationsto
rank. Furthermore the output requiredfrom multiple move
selectionis very disparateanddifficult for the network to learn



efficiently: an outputof 000001(a move in the seventhslot)
is markedly differentfrom 100000(a move in the first slot).

Futurework will concentraten varyingthe cultural learn-
ing parametersandfurther analysisof this approactfor other
problems.
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