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Abstract— This paper describesa cultural learning approach
to the evolution of agentsto play the gameof connect-four. Each
agenthasa neural network responsiblefor perceiving the curr ent
board configuration and selecting an appropriate next move.
Populations evolve thr ough population learning, a processof
Darwinian evolution, using geneticalgorithms. Cultural learning
is implemented by selecting highly fit agents as teachers to
instruct the next generation. Teacherscommunicate with pupils
thr ough a hidden layer in each neural network (the verbal
input/output layer) and pupils attempt to replicate utterances
by back-propagation. Experiments are conducted comparing
the performance of populations employing population learning
alone and populations employing both population and cultural
learning.

I. INTRODUCTION

Cultural learningallows populationsto passon knowledge
to the next generationthrough non-geneticmeansthrough
a processof communicationor artifact creation.Populations
employing sucha mechanismshouldintuitively be inherently
more robust to changingand hostile environments.From an
artificial intelligenceperspective,culturallearningis usefulbe-
causeit providesan interestingalternative to moretraditional
life-time learningsimulations.

In orderto simulatecultural learning,teachersareselected
from the populationand allowed to instruct the next gener-
ation. In this way, important information gainedthroughthe
life-time of the previous generationis not lost andthe fitness
of the entire populationcan be improved. More importantly,
no prior solutionknowledgeis requiredto producesolutions,
making cultural learning an ideal candidatefor sequential
decision task solving and an alternative to reinforcement
learningor test-caseapproaches.

In this paper, we chosethe gameof connect-fouras the
sequentialdecisiontask to be solved. While a simple game,
connect-fourrequiresthe playerto developa clearstrategy to
be consistentlysuccessful.In orderto ascertainthe benefitof
cultural learning,an initial set of experimentsare performed
with populationsemploying only Darwinian-basedpopulation
learning through the use of genetic algorithms. A second
experimentaddscultural learningto the population.

Some researchhas been undertaken in the evolution of
connect-fourplayersemploying a library of existing games
to train the neural networks by back-propagation[1] and

reinforcementlearning methods[2]. This paperpresentsan
alternative approachto both.

Theremainderof thispaperis arrangedasfollows:Section2
summarisesrelatedresearchandbackgroundmaterial.Section
3 discussesthe encodingtechniqueemployed to allow neural
network agentsto play. Section4 presentsthe artificial life
simulator employed to conduct the experiments.Section 5
illustrates the experiment results. Section 6 concludesand
suggestsfuture work.

II . RELATED WORK

The following sectionoutlines somebackgroundmaterial
including learningmodelsandthe gameof connect-four.

A. LearningModels

A numberof learning modelscan be identified from ob-
servation in nature. These can roughly be classified into
population,life-time andcultural learning.

1) Population Learning: Populationlearningrefers to the
processwherebya populationof organismsevolves,or learns,
by genetic meansthrough a Darwinian processof iterated
selectionand reproductionof fit individuals. In this model,
the learning processis strictly confinedto eachorganism’s
geneticmaterial:the organismitself doesnot contribute to its
survival throughany learningor adaptationprocess.

2) Life-time Learning: By contrast,there exist speciesin
naturethatarecapableof learning,or adaptingto environmen-
tal changesand novel situationsat an individual level. Such
learning, known as life-time learning is often coupledwith
population-basedlearning, but further enhancesthe popula-
tion’s fitnessthroughits adaptabilityandresistanceto change.

Researchhasshown that the additionof life-time learning
to a populationof agentsis capableof achieving muchhigher
levelsof populationfitnessthanpopulationlearningalone[3],
[4], [5], [6].

3) Cultural Learning: Culturecanbe succinctlydescribed
as a processof information transferwithin a populationthat
occurswithout the useof geneticmaterial.Culture can take
many formssuchaslanguage,signalsor artifactualmaterials.
Suchinformationexchangeoccursduringthe lifetime of indi-
vidualsin a populationandcangreatlyenhancethebehaviour
of such species.Becausetheseexchangesoccur during an



individual’s lifetime, cultural learning can be considereda
subsetof lifetime learning.

A numberof approacheswere consideredfor the imple-
mentationof culturallearningincludingfixedlexicons[7], [8],
emerginglexicons[9], [10], linguisticconstraints[11], indexed
memory[12], cultural artifacts[13], [14] andsignal-situation
tables[15]. The approachchosenwas the teacher/pupilsce-
nario [16], [17], [8] wherea numberof highly fit agentsare
selectedfrom the populationto act as teachersfor the next
generationof agents.Pupils learnfrom teachersby observing
the teacher’s verbal output and attemptingto mimic it using
their own verbal apparatus.As a result of theseinteractions,
a lexicon of symbolsevolvesto describesituationswithin the
population’s environment.

B. ConnectFour

The gameof connect-fouris a two-playergameplayedon
a verticalboardof 7x6 positionsinto which piecesareslotted
in oneof sevenavailableslots.Eachplayeris givena number
of colouredpieces(one colour per player)and must attempt
to createhorizontal,vertical or diagonalpiece-linesof length
four. Playersplaceone pieceper turn into one of the seven
slots.The piecethen falls onto a free position in the chosen
column, creatingpiles, or towers, of pieces.If a column is
full, the player must selectan available slot. The two most
popularstrategiesareoutlinedbelow.
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Fig. 1. Connect-Four Strategies

1) OpenLines: The basicpremiseof the openlines strat-
egy, illustratedin the left-handboardin Fig. 1, is to createa
situationwhereawin is inevitableregardlessof any opponent’s

move. A player must createa line of 3 pieceswith space
available on both sidesof the line. Since the opponentcan
only move onepieceat a time, this situationwill always lead
to playervictory.

2) Forced Open Lines: The forced open lines strategy
follow the samebasicpremiseas the openlines strategy, but
actively forces the opponentinto concedingvictory. This is
achievedby placingpiecesin sucha mannerthat theopponent
must move into a column in order to prevent the player
winning. Once the opponent’s piece is in place, its position
allows the playerto completea differentwinning line. This is
illustratedin the right-handboardin Fig. 1.

II I. GAME ENCODING

In orderfor a populationof neuralnetworks to play games
of connect-four, a methodmustbe developedto encodeboth
the board’s currentpositionanddecodethe network’s output
into a valid move.

A. Board Encoding

As the gameof connect-fourconsistsof a simple matrix
with only two typesof piece(theplayer’s andtheopponent’s),
encodingthe currentboardposition is not difficult. Two bits
are usedfor eachposition on the board,where bit patterns
arechosenarbitrarily as:00 for emptypositions,01 for player
piecesand 11 for opponentpieces.Each board position is
encodedsequentially, creatinga bit string of 84.

B. Move Decoding

Move decodingtakes the network’s outputand determines
the network’s chosenmove. During the preparationfor these
experiments,two decodingschemeswereconsidered.

1) Multiple Move Selection: For the multiple move selec-
tion approach,an agent’s neuralnetwork was allowed seven
outputnodes,eachrepresentinga possiblemove.Thenetwork
is shown the currentboardposition and the strongestoutput
representinga valid move is chosenas the network’s output.

2) Multiple Board Selection:Thesecondapproachchanges
the situation from a choice of moves to a choice of board
positions.The currentboardposition is taken andthe agent’s
piecesare addediteratively into eachslot. At eachiteration,
the network is shown the currentboardposition,plus oneof
the seven possiblemoves.This time, the neuralnetwork has
only oneoutputnodeandtheboardpositionwith thestrongest
output responseis deemedto be the agent’s preferredboard
position.

IV. SIM ULATOR

The experimentsoutlined in this paper were performed
usinga previously developedartificial life simulator[18], [5],
[6]. The simulatorallows populationsof neuralnetworks to
evolve using a geneticalgorithm and eachnetwork can also
betrainedduringeachgenerationof anexperimentto simulate
life-time learning.

Eachmemberof the populationis in possessionof both a
phenotype(a neuralnetwork) and a genotype(a genecode).



The genecode is usedto determinethe individual’s neural
network structureand weights at birth. If the individual is
selectedfor reproduction,thegenecodeis combinedwith that
of anotherindividual using the processesof crossover and
mutation to producea genotypeincorporatingfeaturesfrom
both parents.

In orderfor this mechanismto functioncorrectly, a mapping
of a neuralnetwork structureto a genecodeis required.This
is achievedusinga modifiedversionof markerbasedencoding
which allows networks to develop any numberof nodesand
interconnectinglinks, giving a largenumberof possibleneural
network architecturepermutations.

        Start Marker     Node Label    Threshold    Link to Node    Link Weight    Link to Node    Link Weight    End Marker

SM                        5     0.8              4      0.83    3                      -0.51                 EM... ...

Fig. 2. Marker BasedEncoding

Marker basedencodingrepresentsneuralnetwork elements
(nodesandlinks) in a binarystring.Eachelementis separated
by a marker to allow the decodingmechanismto distinguish
betweenthe different typesof elementand thereforededuce
interconnections[19], [20], [21].

In this implementation,a marker is given for every nodein
a network. Following the nodemarker, the node’s detailsare
storedin sequentialorderon the bit string. This includesthe
node’s label and its thresholdvalue. Immediatelyfollowing
the node’s details, is another marker which indicates the
start of one or more node-weightpairs. Each of thesepairs
indicatesa back connectionfrom the nodeto other nodesin
the network along with the connection’s weight value.Once
the last connectionhas beenencoded,the schemeplacesan
endmarker to indicatetheendof thenode’s encoding(Fig. 2).
This schemeallows any numberof hiddenlayersandnodes,
giving greatflexibility for experimentation.

The networks undergo variousstagesthroughouttheir life-
time. Firstly, thegenecodesaredecodedto createtheir neural
network structure. Training is then performed using error
back-propagationfor a given numberof iterations (training
cycles). Each network is testedto determineits fitnessand
the populationis ranked using linear basedfitness ranking.
Roulettewheelselectionis employedto generatethe interme-
diate population.Crossover and mutationoperatorsare then
appliedto createthe next generation.

The crossover operator is capable of altering both the
number of links and nodes in a network architecture.In
addition,a structuralmutationoperatorallows nodesandlinks
to be addedor deleted.

A. SimulatingCultural Evolution

In orderto performexperimentsrelatedto culturalevolution,
it wasnecessaryto adapttheexisting simulatorarchitectureto
allow agentsto communicatewith oneanother. This was im-
plementedusinganextendedversionof the approachadopted
by HutchinsandHazlehurst[22]. Thelasthiddenlayerof each
agent’s neuralnetwork functionsasa verbalinput/outputlayer
(Fig. 3).

Input Layer

Output Layer

Verbal I/O Layer

. . .

. . .

Verbal I/O Layer

Agent 1

Agent 2

Fig. 3. Agent CommunicationArchitecture

At the endof eachgeneration,a percentageof the popula-
tion’s fittest networksareselectedandareallowed to become
teachersfor the next generation.The teachingprocesstakes
placeas follows: a teacheris stochasticallyassignedn pupils
from the population where n = N p o p

N t e a c h e r s
, where Npop is

the populationsize and N teachers is the numberof teachers.
Eachpupil follows theteacherin its environmentandobserves
the teacher’s verbaloutputas it playsgamesof connect-four.
The pupil thenattemptsto emulateits teacher’s verbaloutput
using back-propagation.Oncethe teachingprocesshasbeen
completed,theteachersdie andnew teachersareselectedfrom
the new generation.

In orderfor a pupil andteacherto performtheseexchanges,
it is necessaryfor themto sharea similar verbal input/output
layer structure.It is obvious, for instance,that a pupil with
too few verbal input nodeswith respectto a teacher’s will
be unableto gain any advantagefrom the processof cultural
learning.To counteractthis restriction,pupilsandteachersare
pairedaccordingto their verbalinput/outputlayercompatibil-
ities.

V. EXPERIMENT RESULTS

A populationof 20 agentswereallowed to evolve for 100
generations.At eachgeneration,agentsplay in a tournament
against all other players. In addition, each agent plays a
minimax player with three levels of difficulty. In total, each
agentplays 22 gamesof connect-fourin its lifetime. Agents
areassignedfitnessaccordingto eachgame’s result:3 points
for a botha win anda draw and0 pointsfor a loss.This gives
a fitnessrangeof [0,66].

In previouswork by Denaroet al.[17], it wassuggestedthat
theadditionof noiseto a teacher’sverbaloutputcouldenhance
a population’sability to retainculturally acquiredinformation.
This approachwas replicatedin previous experiments[23]
and found to be a valuableaddition to the cultural learning
process.Theadditionof culturalnoisehelpsaddmuchneeded



diversity to the population’s lexicon and halts the process
of prematureconvergence.Intuitively, since teachersare not
perfectembodimentsof problemsolutions,it is not desirable
for pupilsto becomemereclonesof teachersthatareassigned
to them. By introducingnoise we allow the individuality of
particularagentsto remainpresentevenaftermultiple teaching
iterations.

Theculturalmutationparameterwassetupto generatenoise
in therange[-0.5,0.5]to the teacher’s outputwheninstructing
a pupil with probability 0.05. Crossover was set at 0.6 and
mutationat 0.02.Theculturallearningsettingsof teacherratio
andteachingcyclesweresetat 0.1 and5 respectively.
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Fig. 4. Multiple Move Selection

Thefirst two experimentsemploy populationlearningalone
and are designedto determinethe best move-decodingap-
proach as well as the performanceof population learning.
The final experimentaddscultural learningto the population.
For the purposesof comparison,the performanceof a player
employing a randomstrategy (i.e. playing randommoves) is
illustratedalongwith the simulationresults.

A. Multiple Move Selection

It is clear from the results illustrated in Fig. 4 that the
agentsare indeedevolving to play bettergamesof connect-
four but that this evolution quickly stabilisesat fitnesslevels
of around42. The populationappearsto have stagnatedand
further improvement is unlikely. However, the population’s
performancefar outstripsthat of the randomplayer.

B. Multiple Board Selection

The seconddecodingstrategy was moresuccessful.Fig. 5
shows both the multiple move and multiple board selection
resultsto better illustrate the improvement.The populations
have attained a higher level of fitness than the previous
method.In light of theseresults,we employedmultiple board
selectionto conductthefinal experimentinvolving theaddition
of cultural learningto the population.

C. Cultural Learning

This final experimentaddscultural learningcapabilitiesto
the population.Teachersplay a full tournamentwhile pupils
observe, and at eachmove, the teachercorrectsthe pupil’s
perceptionthrough back-propagation.The results in Fig. 6
show that the addition of cultural learningprovides the best
performanceandthat the fitnesslevels show an upward trend
at theendof theexperiment,suggestingthat thepopulationis
capableof further improvement.
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Fig. 5. Multiple Board Selection

VI. CONCLUSION
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Fig. 6. Cultural Learning

These experiments show that cultural learning can be
successfullyapplied in populationsof neural networks to
develop strategies for the gameof connect-four. In addition,
the preliminary experimentsshow that multiple board se-
lection delivers better results than multiple move selection.
Sinceneuralnetworks are efficient classifiersit is intuitively
preferableto presenta selectionof board configurationsto
rank. Furthermore,the output requiredfrom multiple move
selectionis verydisparateanddifficult for thenetwork to learn



efficiently: an outputof 000001(a move in the seventhslot)
is markedly differentfrom 100000(a move in the first slot).

Futurework will concentrateon varying the cultural learn-
ing parametersandfurtheranalysisof this approachfor other
problems.
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