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Abstract

The fields of neural networks and genetic algorithms
have both presented alternative paradigms for
modelling learning. In the field of neural networks,
the brain is modelled in a simplified manner as a
network of interconnected nodes; learning is achieved
by modifying the weights on the edges. In genetic
algorithms solutions are evolved across a population
of chromosomes. Learning occurs at a population
level whereas in a neural network learning occurs in
that network in isolation.

In nature, there is much evidence that these
processes neither occur nor operate in isolation (e.g.
a learned trait may become genetically assimilated).
Many theories regarding the interaction between
evolution and life-time learning have been proposed
including those of Lamarck, Darwin and Baldwin.

In this paper, we describe the design and devel-
opment of a simulator which allows the evolution of
populations of creatures all of which are capable of
learning at the level of an individual correspondingly
to life-time learning and population based learning.

We discuss the results of a series of simulations
wherein these different types of learning can be used,
either in isolation or together. We also investigate
their robustness in the face of changing environments.

The work consolidates some existing findings in the
field and also suggests that the combination of life-

time and population based learning may lead to the
development of a paradigm suitable for the develop-
ment of systems capable of evolving solutions acting
in changeable environments.

1 Introduction

The artificial life simulator was developed so that
meaningful experiments with artificial life societies
comprising a population of neural networks could be
performed in such a way that allowed population,
individual and combined learning.

At an individual level, each component of a
population is a neural network|[4],[5] which is capable
of responding and reacting to stimuli react. In the
case of the simulator, these stimuli were in the form
of simple bit patterns which were introduced to the
input layer of each network.

Once an output is calculated, it is collected from
the output layer of each network and compared to
the desired result. Using back-propagation, each net-
work is capable of ‘learning’ responses to each stimuli.

At a population level, the simulator uses genetic
algorithms[14],[2],[3] to increase a population’s fit-
ness by selecting the creatures which have performed
well and ‘mating’ their gene codes. The gene codes
themselves represent a binary encoded version of
each creature’s neural network. In this way, it is
possible to blend neural networks together in order
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to achieve a higher degrees of population fitness.

It was found that by combining both the neural
networks’ performance and the genetic algorithm,
not only was it possible to out-perform each mech-
anism, but that this also proved to be much more
robust in to environmental changes.

In subsequent sections, we will examine the
simulator in more detail and discuss some of the
results which were obtained during experiments.

2 The Artificial Life Simulator

2.1 Environmental Setting

The environment consists of a number of stimuli that
are given to each creature. The stimuli consist of
bit patterns representing food and poison. The way
the creature responds to the bit pattern determines
whether it has correctly identified it as food or
poison. Each creature is assigned an “energy level”
at birth, which is altered during its lifetime according
to its responses to the given bit patterns. Whenever
a creature ingests poison, recognising it incorrectly
as food, it is punished by removing some of its life
energy. When it ingests food it is rewarded.

The life energy of each creature can be used as
an evaluation of the creature’s ability, but a second
method is also incorporated in the simulator. This
function examines the creature’s performance in
terms of its neural network responses. It takes
account of the network’s overall error as well as
how many of the stimuli it responded correctly. To
understand why a second “opinion” is sometimes nec-
essary, consider the following example. A creature
c is created with a below average neural network.
During its lifetime c loses a lot of its life energy as it
attempts to distinguish between the food and poison
patterns. Toward the end of its lifetime ¢ finally
learns to distinguish between the two. However, by
this time it will have used up much of its life energy
and given the first function alone, would probably

not be selected for subsequent generations. Even
though the learning took a long time, which may
not be immediately useful, a recombination of the
creature’s gene code with another’s may produce
a good neural network. Thus the two methods
combined provide a solid evaluation of the abilities
of each creature.

2.2 Neural Network

The neural network represents the nervous system
of each creature in the simulator. The network is
central to individual creatures’ ability to learn about
their environment in order to survive. Many possible
architectures were available for consideration and
had to be considered according to their merit with
respect to complexity, suitability to analysis and to
their functionality.

The final choice of network architecture was a
fully connected feed-forward network, using the error
back-propagation algorithm. It was decided that
whilst an auto-associative network may be able to
produce some interesting results, its relative com-
plexity may require a prohibitively long development
time.

To introduce diversity amongst creatures, the
simulator initially assigns randomly the number of
layers, the number of nodes per layers and each of
the weights. This provides a rich diversity of network
architectures, allowing networks of differing shapes
and sizes to achieve the same solution.

The neural network component, like the genetic
algorithm component can be switched on (and off) to
conduct experiments pertaining to the usefulness of
life time learning, population learning, and combined
learning.

2.3 Genetic Algorithm

The simulator incorporates a genetic algorithm
mechanism which allows populations of creatures to
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evolve.

The gene code of a creature consists of a string
of binary digits. These are encoded in such a way
as to represent a neural network. The complex
structure of a neural network can be broken down
into component parts making it easier to encode.

A neural network consists of nodes and links. For
encoding, given that each node in layer n is attached
to all nodes in layer n + 1, it is possible to calculate
how many links are between the nodes in each layer.
Therefore it is sufficient to encode the number of
layers and number of nodes in each layer.

The most important element in a neural network,
from a learning perspective, is the value of the
edge weights. Upon calculating the number of links
per layer then no further information needs to be
encoded other than the value of the weights.

At the start of each gene-code, there is a header
section which contains the number of layers followed
by the number of nodes in each layer. In the re-
maining portion of the code, each weight is encoded
(Figure 1).
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Figure 1: A sample creature gene code showing header
and crossover points

As weights in a neural network are floating point
numbers, a simple method was devised in order
to balance the need for sufficient accuracy so that
effective learning could be achieved, and the need
for a manageable encoding scheme. Following much
experimentation, it was determined that 2 significant
digits per weight was sufficient for adequate learning
without inflating the size of the encoding too much.

Selection is achieved by the standard roulette wheel

technique and the whole population is replaced each
generation. Population sizes in the simulator are
static; while the possibility of dynamics populations,
where some genes die out while others live to see their
offspring evolve, sounds very appealing, the results
would be more difficult to analyse and so was not
implemented in the simulator.
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Figure 2: Sample crossover showing the child gene
containing neural network portions of both parents

One-point crossover, as illustrated in the genetic
algorithms section, is used in the simulator to re-
combine parent gene-codes. However, it is important
that the crossover process do not interfere with the
developed encoding technique. To ensure that the
crossover process does not interfere with the devel-
oped encoding technique, it is necessary to take into
account the header section and the number of bits
required for each encoded weight. Intervals of n bits
can then be placed on the gene code and crossover
is made to occur in one of these points. The result-
ing strings will contain information from both parent
strings, meaning that different portions of the child’s
neural network will correspond to different portions
of the parent networks (Figure 2). A set mutation
rate is also used by the simulator to determine the
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chance of a bit in the gene code being flipped.

2.4 Changing Environments

A wuseful property of the artificial life simulator,
for experimentation, is the ability to alter the
environment during an experiment. This allows the
examination of the creatures’ reactions and ability
to recover from such changes.

In particular, it is useful in outlining the benefits
of life time learning, population learning and the
two combined. In order for this to work, it is simply
a case of altering the appearance of food or poison
during the course of the simulation. This can be
done quite readily by specifying an alternate training
and testing set to use some specified generation.

3 Results

The experiments carried out involved a popula-
tion of 100 creatures evolving for 400 generations.
These were set up to identify the relative benefits
or shortcomings of individual, population and com-
bined learning when confronted with problems such
as the XOR and OR. The creatures were allowed to
learn (individual and combined learning), and each
was given 10 iterations of training on randomly gen-
erated food and poison patterns. In the following
sections, the results for each experiments will be out-
lined.

3.1 Individual Learning

The individual learning experiments, wherein crea-
tures are not subjected to evolution controlled by
a genetic algorithms, take a slightly different view
of the commonly accepted evolutionary process. As
recombination and mutation are not allowed, the
process of mating does not yield any new genetic
material. This means that if the experiments were
set up to produce children identical to the parents,
and the neural networks reset according to their gene
code each generation, the results would be simply

100 creatures (training x 10)
240 T T T T T

Figure 3: Individual learning for the XOR problem

the same for each generation, which is not very useful.

Instead, the Lamarckian theory of evolution is
adopted for the purposes of these experiments;
rather than resetting the neural networks of the
children at each generation, the neural networks are
left intact and allowed to carry on into the next
generation. It is in fact as though the same creatures
were continually present in the population, never
dying nor being replaced.

This is implemented by omitting any mating of
the creatures. The results are shown for the XOR
problem in figure 3 and for the OR problem in figure
4.

The XOR problem is one which cannot be solved
easily, as we can see from figure 3. The graph is a
simple downward sloping curve, eventually hitting
rock bottom fitness at the 120 mark, even though it
started at a fairly average 225.

This is due to the fact that, although some crea-
tures will exist that are capable of recognising food,
many are not capable. As the training continues,
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Figure 4: Individual learning for the OR problem

these creatures actually become worse at recognising
the food, and the average fitness deteriorates. This
is because the network’s architecture may be simply
unsuitable for solving the XOR problem and further
training does not rectify, but in fact worsens the
condition of the network outputs. The graph for the
OR problem (figure 4) shows the same downward
sloping curve, although at a higher average fitness,
and demonstrates a similar situation.

It is rather clear from these experiments that this
type of quasi-Lamarckian evolution is not really
suitable for such problems. Individual learning on
its own does not seem to lead to the same kind of
results as obtained in our subsequent experiments.

3.2 Population Learning

Population learning, implemented using genetic
algorithms, is carried out by generating a population
of creatures and allowing them to mate over a
number of generations. None of the creatures are
trained at any time, instead they are tested to
determine their fitness with relation to the testing
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Figure 5: Population learning for the XOR problem

set. Thus, the “nervous system” of each creature
remains static throughout its lifetime and the only
changes from generation to generation are genetic.

The results for the harder learning problem, XOR,
can be seen in figure 5. There is an immediate
peak from a low fitness to an average fitness,
due to the immediate elimination of obviously
poor creatures. The fitness stays around the 300
mark until at around the 200" generation there
is a sudden surge in fitness. This is most likely
due to the genetic algorithm having “discovered”
a gene, or a number of genes which perform very well.

It is clear from the figure that population learning
is a powerful tool in the search for an optimal
population. Average fitness in any of the experi-
ments rarely exceed the 450 mark so an average
fitness of around 400 should be considered very good.

The results for the OR problem (Figure 6) are
rather similar, although the fitness does seem to
initially drop and then recover rapidly.
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Figure 6: Population learning for the OR problem

3.3 Combined Learning

The next set of experiments performed were con-
cerned with the effect of combining both population
based learning given by the genetic algorithm com-
ponent of the simulator and the individual learning
component.

Each individual creature in the population is
“born” with a gene code which remains static
throughout its lifetime. As the creature is trained,
the neural network will be altered as will its per-
ception of what represents food and poison. This
change in the neural network is not re-encoded into
the gene code of the creature or its offspring. During
reproduction, two creatures create two new child
creatures which will contain segments of each of the
parent’s gene code and therefore segments of each
parent’s neural network.

The graph in figure 7 shows a sharp increase from
an initial fitness of about 190 to 400 for the XOR
problem. The fact that results clearly outperform
both the population and individual learning experi-
ments described previously deserves some attention.

Figure 7: Combined learning for the XOR problem

Figure 8: Combined learning for the OR problem
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It is interesting to note that in these experiments,
the creatures’ performance is superior to that
achieved in the experiments using only population
learning results, without re-encoding what they
have learned during their lifetime into genetic code.
Rather, it seems that those creatures which success-
fully learned had a higher fitness than those which
did not, and so were chosen as parents. After about
the 20" generation, most of the existing population
demonstrates this predisposed ability to distinguish
between food and poison. We see evidence of the
Baldwin effect[15] (where learned traits have become
genetically assimilated into the population).

The graph for the OR results (figure 8) shows a
different situation. The population fitness seems al-
most static at around 310 for the duration of the ex-
periment. This provides an example of the hiding or
shielding effect, where the problem at hand is triv-
ial enough to be learned quickly by most members
of the population, thereby hiding genetic differences
and making selection more difficult for the genetic al-
gorithm (known as the hiding or shielding effect[10]).

3.4 Changing Environments

These experiments were designed to determine the
robustness of the process of individual learning, pop-
ulation learning and the two combined. The pop-
ulation begins with a standard training and testing
set for 250 generations. Having completed these gen-
erations, the training and testing sets are reversed,
i.e., that which used to represent food now represents
poison and vice versa. This equates to a catastrophic
change in the environment. The results are described
for each of the three cases for both harder and easier
problems in turn.

3.4.1 Population Learning

The results for the XOR problem are illustrated in
figure 9. The sudden drop in fitness at the 250"
generation is dramatic, dropping from an average
300 to 50. However, the population appears to
start recovering and reaches 150 by the time the

100 creatures (mating) (Food change a1 250)
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Figure 9: Population learning for the XOR problem
in a changing environment

experiment ends. The huge drop is to be expected,
because the population learning process is too slow
to adapt to such a sudden change. In fact, if the
simulator supported dynamic populations, there
probably would not have been many creatures left
at the 250" generation.

The population is able to recover to a degree
and may continue to recover during subsequent
successive generations. The recovery speed is quite
similar to the beginning of the experiment with
population fitness in both cases jumping by about
100. The population learning is quite weak at
managing sudden change, but will eventually recover
from such trauma. The situation is almost the same
for the OR problem (figure 10) where the graph
exhibits much the same fluctuations, sudden drop
and slight recovery.

3.4.2 Individual Learning

The XOR problem results in figure 11 show a similar
tendency toward a downward curve like the previous
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Figure 10: Population learning for the OR problem
in a changing environment
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Figure 11: Individual learning for the XOR problem
in a changing environment
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Figure 12: Individual learning for the OR problem in
a changing environment

XOR experiment with individual learning. In this
case, the sudden change in food and poison patterns
seem to have actually been initially beneficial to
the population. The sudden jump from a dwindling
130 to an average 210 seemed promising, but the
population quickly fell back to nearly its mediocre
level. However, the boost was not completely lost,
as for the first time, the average fitness of the
population seems to be on the increase toward the
end of the experiment.

Had the change been the other way around, the
population would have quickly succumbed. However,
the boost incurred from the change allowed the
population to begin to improve their fitness. It
can be deduced that individual learning in isolation
is certainly not robust for more difficult problems
and the effects any change will have are entirely
dependent on the population in existence.

The situation for the OR problem illustrates how
a full recovery may be made with an easy problem
(figure 12). The graph begins by exhibiting the
familiar downward sloping curve. The abrupt drop
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corresponds to the change in patterns. However,
instead of remaining at a low fitness, the population
quickly recovers.

This is best explained by the fact that the training
and testing sets for both the initial and final stages
of the experiment both represent very easy problems.
The neural networks take no time at all in reaching
an acceptable fitness given both the first and second
food and poison patterns.

3.4.3 Combined Learning

100 creatures (mating & trairing x 10) (Food change at 250)
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Figure 13: Combined learning for the XOR problem
in a changing environment

The final experiment involved both individual and
population learning in a changing environment. The
results for the XOR problem illustrated in figure 13
show that even though the population was severely
affected by the sudden change in food and poison
patterns, within a few generations it had recovered
and increased its fitness to an even higher level than
it had before the change occurred.

The graph for the OR problem (figure 14) shows
a near flat fitness of about 310. There is hardly a
perceptible sign of the change in pattern occurring
as the fitness remains almost entirely stable through-
out. The graph is similar to the previous experiment
involving combined learning and also to the individ-
ual learning experiment above. As the new training
set is also trivial to learn, the training element of the
population does not even require a generation to re-
cover from a change in patterns.

100 creatures (mating & trairing x 10) (Food change at 250)
340 T T T T T T T

brllmwmm' Th\rr"l'n’l"‘rwrw— T \U’

a00

150 200 250 300 380 400
Genarations

o 50 100

Figure 14: Combined learning for the OR problem in
a changing environment

Such results outline the robustness of the combi-
nation of both individual and population learning.
These findings echo related results obtained; the
interested reader is directed to[6],[8] and [9] for
related work. The population fitness did not drop
to disastrous levels because the individual learn-
ing factor allowed the creatures to at least learn
something about the new patterns. The ones which
were found to have learned better than others
were then given the opportunity to pass on their
learning ability, after which the population recovered.
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4 Conclusion and Possible Fu-
ture Developments

The construction of the simulator has brought
together many aspects of the artificial life world, but
could be expanded to include features which would
give the ability to set up more intricate experiments.
However, the experimental results which the simula-
tor allowed to generate are interesting.

The distinction between the Darwinian and
Lamarckian ideas of evolution was able to be played
out in the simulator leading to some interesting
conclusions. While the two, represented by popu-
lation and individual learning respectively, did not
fare particularly well in isolation, when they were
combined, the results outperformed either learning
mechanism in isolation.

Behaviours exhibited by the populations demon-
strated both the Baldwin effect and the hiding effect.

Extra functionality could be added to the simula-
tor to allow more sophisticated experiments. With
respect to neural networks, it would be interesting
to implement auto-associative neural nets as well as
associative. It would be interesting to see how each
would respond individually and in the mixed in the
same population.

With respect to the genetic algorithm, only 1
point crossover was implemented, leaving room for
additional work which might increase the perfor-
mance of the genetic algorithm component. Also,
the encoding mechanism, while useful in this imple-
mentation could be improved to be more efficient.

The simulator could be conceivably altered to
evolve neural networks capable of solving more
complex problems than OR or XOR. In most of the
experiments, while the population fitness might not
have been as high as hoped, the population was
always able to correctly solve these two problems,
suggesting that the idea of the simulator as a
problem solving platform may be useful.
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