N
b,
-

National University of Ireland, Galway

DEPARTMENT OF INFORMATION TECHNOLOGY

technical report NUIG-IT-111002

Applying Evolutionary Computation to
Designing Neural Networks: A Study of the
State of the Art

D. Curran (NUI, Galway)
C. O’Riordan (NUI, Galway)

itreports@nuigalway.ie http://www.it.nuigalway.ie/

Applying Evolutionary Computation to Designing Neural
Networks: A Study of the State of the Art

Dara Curran
Department of I'T
NUI, Galway

Colm O’Riordan
Department of I'T
NUI, Galway

colmor@geminga.nuigalway.ie

October 14, 2002

Abstract

In recent times, much research has been undertaken
in the combination of two important and distinct
areas: genetic algorithms and neural networks.
Genetic algorithms attempt to apply evolutionary
concepts to the field of problem solving while neural
networks represent a simplified model of the brain
capable of solving classification problems.

Within the field of neural networks, problems arise
in attempting to define the optimal network (weights,
architecture and learning functions etc.). In this pa-
per, we review approaches that have been adopted
to evolve, using genetic algorithms, suitable neural
networks.

1 Introduction

In recent times, much research has been undertaken
in the combination of two important and distinct ar-
eas: genetic algorithms and neural networks. Genetic
algorithms attempt to apply evolutionary concepts to
the field of problem solving, notably function optimi-
sation, and have proven to be valuable in searching
large, complex problem spaces.

Neural networks are highly simplified models of the
working of the brain. These consist of a combination
of neurons and synaptic connections, which are ca-
pable of passing data through multiple layers. The
end result is a system which is capable of pattern
recognition and classification.

In the past, algorithms such as back propagation
have been developed which refine one of the princi-
pal components of neural networks: the connection
weights. The system has worked well, but is prone to
becoming trapped in local maxima and is incapable
of optimisation where problems lie in a multi-modal
or non-differentiable problem space.

Genetic algorithms and neural networks can be
combined such that a population of neural networks
compete with each other in a Darwinian ‘survival of
the fittest’ setting. Networks which are deemed to
be fit are combined and passed onto the next genera-
tion producing an increasingly fit population, so that
after a number of iterations an optimised neural net-
work can be obtained without resorting to a design
by hand method.

The remainder of the paper will outline some of the
characteristics of neural networks which have been
evolved and some of the many possible solutions for
representing a neural network in a format suitable to
the genetic algorithm, i.e. transforming a network to
a gene code or chromosome. In the concluding re-

marks some suggestions for further research are dis-
cussed.

2 Layers of Evolution

The evolution of neural networks can be classed ac-
cording to the goals behind such evolution. Some
schemes have proposed the evolution of the weights,
starting with a fixed architecture. Others have
suggested that the architecture is more important.
Other approaches have included transfer functions
and learning rules. Perhaps the most potentially in-
teresting area for new research directions lies in the
combination of such evolutionary techniques. In the
following sections, some of the most popular evo-
lutionary frameworks are discussed, including some
which combine more than one aspect.

2.1 Evolution of weights

The evolution of weights assumes that the architec-
ture of the network remains static. This implies some
degree of pre-processing by the human designers and
is generally employed when some ideas exist pertain-
ing to the structure of the neural network.

The primary motivation for using evolutionary
techniques to establish the weighting values rather
than traditional gradient descent techniques such as
back propagation, lies in the inherent problems asso-
ciated with gradient descent approaches. Back prop-
agation in particular can become easily trapped in lo-
cal maxima. Furthermore, it is impossible for a back
propagation algorithm to find the optimal solution if
the function being optimised is multimodal or non-
differentiable[1]. In addition, it has been shown that
back propagation is sensitive to the initial condition
of the neural network causing additional problems|2].

Evolutionary approaches such as genetic algo-
rithms however, are able to optimise functions in such
environments and, furthermore, do not even require

the function to be continuous. This is because ge-
netic algorithms employ fitness functions which can
be tailored to suit the problem at hand and are not
restricted in any way.

Much research has been completed in the evolution
of connection weights [3, 4, 5, 6, 7, 8, 9]. Another ap-
proach uses the global searching capability of genetic
algorithms to search the broad area of the weight
problem space, and then uses back propagation as a
local search to refine the weights[5]. This approach
ensures that the networks evolved are very accurate,
more accurate than they would have been had genetic
algorithms been used in isolation.

2.2 Evolution of architectures

Work which addresses the evolution of architectures
views the structure of the neural network as the defin-
ing characteristic. The view is that once a suitable
structure is found, an algorithm such as back propa-
gation can be used to find the correct weights. Tech-
niques prior to the evolutionary approach consisted
of two basic operations: constructive and destructive.

Broadly speaking, the constructive method begins
with a minimal network and successively adds nodes
and connections until the network is capable of solv-
ing the desired problem with sufficient accuracy. The
destructive method takes the mirror approach. It be-
gins with an already functioning network and succes-
sively removes connections and neurons until the net-
work is no longer able to solve the problem, at which
point the last move is undone. There are clearly prob-
lems with this kind of approach, which is in fact a
form of hill-climbing and is likely to become trapped
in local maxima[10].

The fact that the search space for neural net-
work architectures is infinitely large and non-
differentiable[11] makes the genetic algorithm ap-
proach a good candidate for success. Indeed, research
into the evolution of neural network architectures has
been largely successful[12, 13, 14, 15, 16, 17, 10].

2.3 Transfer Functions

The transfer function for all neurons of a neural net-
works is generally taken to be fixed, although some
attempts have been made to allow its adaptation over
generations [18, 19]. These schemes typically begin
with a fixed proportion of transfer functions, such
as sigmoidal or Gaussian, and allow the genetic al-
gorithm to adapt to a useful combination according
to the situation. Often, transfer function evolution
is combined with another type, such as architecture
or weight evolution which produces more interesting
results.

2.4 Learning Rules

Neural networks have a number of learning rules
which govern the speed and accuracy with which the
network will train. Examples of these are the learning
rate and momentum. These parameters can be diffi-
cult to assign by hand, and therefore make good can-
didates for evolutionary adaptation. Typically the
parameters are encoded into the gene code of each
network and allowed to evolve [20, 15].

2.5 Simultaneous Evolution

One of the most interesting areas of evolutionary neu-
ral networks is the combination of several schemes
which simultaneously evolve different aspects of the
networks. One of the most important is the com-
bination of architecture and weight evolution [11, 7,
12, 21, 22, 18, 23, 24, 25]. The advantage of combin-
ing these two basic elements of a neural network is
that a completely functioning network can be evolved
without any human interaction.

Clearly, it might be advantageous to simultane-
ously evolve more neural network features, thus lead-
ing to more efficient and accurate results. However,
it is not clear whether the increase in complexity of
the resulting encoding scheme would be offset by a

marked improvement in performance. Typical con-
vergence times for combined approaches are large
in comparison to approaches dealing with a sginle
feature, and the addition of more complexity might
make the problem intractable.

3 Encoding Strategies

Crucial to the successful evolution of a neural network
is the way its structure and/or weights are encoded
into the chromosome used by the genetic algorithm.
A great deal of research has been carried out in this
area and as a consequence many systems exist. These
can however be divided into two main camps: direct
and indirect encoding.

3.1 Direct Encoding

Direct encoding is a strategy where some or all of a
neural network’s defining parameters, such as weight
values, number of nodes, connectivity etc., is encoded
into the gene code. Thus it is possible to recreate the
exact neural network from the underlying genotype.
[26].

3.1.1 Connectionist Encoding

Connectionist encoding is concerned with mapping a
neural network’s connectivity to the gene code. An
early implementation of such an encoding scheme is
that of Miller’s Innervator [13]. Innervator has a
fixed number of nodes and connectivity is denoted
by a single bit. A matrix is then derived containing
a full connectivity map of the neural network. The
networks are selected according to their performance
after several epochs of training.

Another approach to connectivity encoding is to
encode the weights for each connection in the neural
network. In the canonical genetic algorithm[27, 28],

chromosomes are defined as a binary string - so early
approaches used a binary string to encode the real
number weights [4, 5].

This is the approach of GENITOR[4]. Wherein,
each connection and its corresponding weight are en-
coded into the gene code. Each weight in GENITOR
is encoded as an 8-bit binary string, indexed by a
single bit which is used to denote the presence or ab-
sence of the connection. The weight values are first
evolved to an optimum, and then a pruning algo-
rithm streamlines the neural network’s architecture,
by changing the index bit as required.

It has been widely asserted that weights associated
with a specific node should be placed in the same
region of the chromosome[5, 11] as this reduces the
probability that they will become separated during
crossover, thereby potentially losing an evolved char-
acteristic of the network.

There are obvious advantages to preserving the tra-
ditional binary approach. It is both very simple and
extremely general. In addition, no new genetic oper-
ators need to be devised. However, converting a real
number to a binary representation invariably means a
loss of accuracy, unless very large strings are created.
Large chromosomes are very often detrimental to the
genetic algorithm’s performance in term of processing
time[27].

Montana [6] devised an encoding scheme which
represents weights as real numbers. He also created
a number of tailored genetic operators which are able
to deal with the change. Another approach has been
the use of integer fractions to denote the real number
value [29, 20], as opposed to approximating the value
by direct encoding.

An encoding scheme using a variable length binary
string has also been developed [23]. A granularity pa-
rameter is added to the chromosome which governs
how many bits are allocated to each weight. Typi-
cally, the algorithm is allowed to evolve globally using
a small number of bits, and is then fine-tuned locally
by increasing the number of bits per weight.

3.1.2 Node Based Encoding

Node based encoding strategies concentrate on the
number of neurons which should be used. Whilst
weight encoding schemes assume that an architec-
ture has already been designed, the construction of
an efficient network structure is just as difficult and is
therefore well suited to a genetic algorithm approach.

In Schiffman’s [30] approach, a blueprint is used
to describe the neural network’s structure. Starting
with the input node, each node is numbered in se-
quence and placed in a list. Then, each node in the
list is taken in turn and the numbers of the connect-
ing nodes from the previous network layers are placed
before its entry in the list, forming a complete node
mapping of the network. Crossover is implemented
between nodes only, and several mutation operators
are used to add or delete weak connections.

A similar system, GANNet, has been devised[18],
but with a few restrictions notably on the number of
input nodes and the fact that only connections be-
tween adjacent layers are allowed. The mutation and
crossover operators have also been altered slightly.

3.1.3 Graph Based Encoding

Graph based encoding views the network as a grid of
functions and terminals. This is an alternative to the
usual parse tree used in other genetic programming
approaches. The scheme also provides a linear chro-
mosome which can be converted back and forth into
the grid for efficiency purposes [31].

The chromosome consists of an ordered list of the
nodes in the network, with an index indicating their
position within the gene code. Each node contains
information regarding its bias, and all its connections
to other nodes, including weights. The nodes can be
seen as either functions or terminals, where functions
are the neurons of the network and the terminals are
the input variables.

The model proposed by Pujol et al [31] allows for
multiple activations functions and any type of net-
work, though the number of nodes is made to be
the same for each member of the population. Spe-
cialised crossover and mutation operators are speci-
fied according to whether the node in question is a
function or terminal, which is made easier thanks to
a dual representation mechanism, allowing the linear
chromosome to be readily mapped to a grid repre-
senting connectivity.

3.1.4 S-Expressions

The use of LISP Symbolic Expressions has been
adopted in the creation of an alternate encoding
strategy. Each network is represented by a number of
functions, representing nodes, and terminals. Rather
than encoding the neural network structure as a list,
Koza and Rice [12] represent this as a parameter tree.

A number of operators can be used to define the
network: arithmetic and weighting functions can be
combined to create the weights of the network and the
bias of a node can be altered via special processing
nodes in the grammar tree.

The S-expressions approach to encoding neural
networks results in quite streamlined gene codes
which do not suffer from the same scalability prob-
lems as direct encoding. Crossover takes place at a
sub-tree level, ensuring that learned portions of the
network are not entirely disrupted.

3.1.5 Layer Based Encoding

Layer based encoding uses a chromosome which is
subdivided into areas corresponding to the neural
networks’s layers. In the GENESYS system [15], each
area has an identifying index, the number of nodes
within it and a number of projector fields which spec-
ify its connectivity to the next layer. Mandischer[32]
modified the system and specifies a radius and den-
sity of connections for each layer. The radius de-

scribes the spread of connections to nodes in the given
area, while the density indicates how many nodes in
the layer are connected. Crossover is applied between
layers and mutation alters the learning rate, momen-
tum, radius, density and the number of nodes in a
layer.

3.1.6 Marker Based

Marker based encoding is inspired by the structure
of DNA in living organisms [33]. In DNA, struc-
tures known as nucleotide triplets specify amino acids
which make up a protein. Some triplets are given spe-
cial ‘marker’ status, which allows them to denote the
start and end of the protein definition.

Marker based chromosomes are said to be circular,
in that one end of the chromosome can be wrapped
around to join the other. The start marker does not
necessarily have to be placed at the start of the gene
code because the algorithm reads the chromosome
until such a marker is found. The scheme allows for
both recurrent and feed-forward networks and can be
said to be complete, in that any gene code can be cor-
rectly converted into a functioning network. Marker
based encoding certainly allows more freedom in the
definition of a neural network and the mutation and
crossover operators can operate without restrictions.

3.2 Indirect Encoding

The indirect encoding strategies attempt to describe
a neural network in terms of assembly instructions or
recipes[30]. Whilst in the direct encoding approach,
parameters of the network were explicitly present
in the genetic code, with indirect encoding only a
method of assembling the network is present.

The main motivations for such a shift are size and
modularity. While direct encoding schemes are, in
general, quite straight-forward to implement, they
suffer from a lack of scalability - the more complex the
network the more computationally intractable they

become due to the size of the gene code in the ge-
netic algorithm.

3.2.1 Matrix Re-writing

One of the first indirect encoding schemes proposed
is that of Kitano’s matrix rewriting[14]. The scheme
is based around the connectivity matrix seen in direct
encoding schemes[13]. It begins with a base 2x2 ma-
trix and repeatedly applies generation rules to each
non-terminal element in the matrix until all elements
are terminals. For instance, if the starting matrix is:

A B
B A
and if the A and B are replaced by - and Zz ,
a a a a
a a a b
a a a a
a b a a
. 0 1 1 1
and if a and b are 10 and 0 0°

The final matrix showing the connectivity of the
neural network would be:

01010101
101 01010
010101171
101 01000
01010101
101 01010
01110101
100 01 010

Generally a fixed number of rewriting steps is used
to create the final matrix. These rewriting rules can

be encoded into a gene code. In this case each rule
can correspond to 4 alleles on the chromosome cor-
responding to the first start rule matrix, containing
A and B. Typically the rules defining the final re-
writing step (i.e. to the binary stage) are predefined
and do not play a part in the evolution of the rules.
For instance the set of rules above could be defined
by the gene code:

ABBAaaaaaaabaaaaaaab

Some good results have been reported for this
scheme [14]. However, recent work [34] has shown
that direct encoding can be at least as good as the
matrix rewriting proposed here.

3.2.2 Cellular Encoding

Cellular encoding, created by Gruau[29, 21], repre-
sents neural networks as grammar trees, i.e. the
grammar describing the network is encoded as a tree.
The building block of cellular encoding is the cell,
which represents a node in an ordered graph. Each
cell has a reading head which reads the cellular code
and acts upon the instructions therein. The cell man-
ages internal variables which can govern its devel-
opment or regulate neural network related parame-
ters such as weights or thresholds. The cell can be
viewed as a Turing machine, only reading sections of
the grammar tree instead of tape.

The development begins with a single cell known as
the ancestor cell, which is connected to an input and
an output cell. The cell’s reading head is placed at
the start of the cellular code (itself in the beginning)
and executes the operator located there. Various op-
erators exist:

- Sequential Division
In sequential division, the cell splits into two
cells, the first of which inherits all the input links
and the second the output links.

- Parallel Division
In parallel division, the cell splits as above, but

both children inherit the input and output links
of the parent cell.

- End Program
This command causes the cell to lose its reading
head and therefore cease to be active.

In addition to these, several value-modifying oper-
ators exist for the parameters stored in the cells:

- Increase and Decrease Bias
This command increases or decreases the thresh-
old within the cell that reads it.

- Increase or Decrease Link Register

The link register contained in each cell points to
a specific connections to or from the cell. Chang-
ing its value causes it to point to a different link.
Once the register has been set to a specific con-
nection, other operations can be performed on it,
such as VAL+ or VAL- which alter the weight
value of the connection pointed to by the link
register.

The sequence of execution of commands is achieved
through means of a FIFO queue. Once a cell executes
a command, it enters a FIFO queue. If the cell di-
vides, the child reading on the left of the tree enters
the queue first. The idea is to emulate parallel exe-
cution of commands by the cells. The system ensures
that no cell will execute two consecutive commands
if there exists a cell which has not executed any com-
mand. To this end, the scheme also includes a WAIT
command, should one portion of the tree be executing
too quickly.

Cellular encoding also allows for recursion to oc-
cur, where a sub-tree of commands can be executed
in a loop with a specified number of iterations. It
also implements a pruning mechanism through the
use of the CLIP and CUT commands which removes
a connection pointed to by the link register.

Cellular encoding can be used to evolve both
weights and architecture of a neural network [35]. It

compares quite favorably towards direct encoding, in
that while the cellular encoding takes longer to com-
pute, the relative amount of effort required to achieve
efficient neural networks make it attractive.

3.2.3 Edge Encoding

A scheme similar to cellular encoding, edge
encoding[16] grows network graphs using edges in-
stead of nodes. While the cellular encoding approach
evaluates each grammar tree node in a breadth first
search manner, thus ensuring parallel execution, edge
encoding is designed to work using depth first search.

The cellular encoding approach tends to create
graphs with a large number of connections which
must then be pruned using the CUT or CLIP opera-
tors. Edge encoding, using its depth first search ap-
proach, favours graphs with fewer connections. How-
ever, the relative lack of connections does not nec-
essarily imply a smaller genetic code - on the con-
trary, edge encodings often have larger gene codes
than those produced by cellular encoding. This is
because there is implicitly more information required
to store edges in a network graph than there is about
the nodes.

Luke and Spector[16] argue that this is not too sig-
nificant and that the real benefit of edge encoding is
that modularity can be created through the devel-
opment of building blocks resulting from their depth
first search approach.

3.2.4 L-Systems

The set of Lindermayer-systems are an encoding
scheme based on the work of Lindermayer. They
are based on a biological model where cells exchange
information with their neighbours. They use a spe-
cialised grammar in which production rules are ap-
plied in parallel rather than sequentially, as seen in
previous examples. Boers and Kuiper [36] have used

this model to generate neural networks. The rewrit-
ing rules take in account the relative position of each
cell to determine whether the production rule should
apply. All possible production rules which are ap-
plicable are applied immediately, rather than waiting
for other portions of the graph to catch up.

The encoding method generates strings which are
not always guaranteed to produce correct production
rules. Therefore, error recovery operations were im-
plemented to address this. The system was successful
with the XOR problem and simple letter recognition
tasks. A modified version, the Building Blocks in
Cascades (BBC) algorithm has been developed based
on this work[37].

3.2.5 Growth Encoding

Cangelosi et al [38] have argued for a more biological
approach to the evolution of neural networks. They
criticise the direct encoding mechanism for its lack of
scalability, but also for its lack of biological plausi-
bility as it is unlikely that the entire nervous system
of an organism is mapped out in detail in its genetic
code.

Their work is based on an earlier project which
was concerned with simulating the growth of synaptic
connections between neurons in a neural network[39].
In the earlier work, the gene code contained informa-
tion on the manner in which connections were allowed
to grow from neurons. The network was mapped in 2-
dimensional space, and those connections which had
reached other nodes in the given time frame were
considered valid - others were discarded.

Cangelosi takes the work further by taking this
previous growing principle but also adding the pos-
sibility of nodes dividing and migrating in their 2-
dimensional environment. The set of rules employed
is similar to the rule rewriting schemes seen earlier
but the application of the rules is radically different
from previous approaches. The genetic code speci-
fies the type of cell which is being represented, the
number of divisions allowed per cell, the connection
growing rate and then angle of growth.

The problem domain studied reflects the biological
premises in the work: the neural networks learn to
move around their environment as well as obtaining
food and water located in certain areas. The scheme
produced interesting results.

3.3 Encoding Difficulties:
The Permutation Problem

The biggest potential problem associated with the en-
coding of a neural network onto a gene code is known
as the permutation or competing conventions prob-
lem. Consider two neural networks which are compu-
tationally equivalent, but contain hidden units in dif-
ferent order. With most of the encoding schemes ex-
amined, these networks will be phenotypically iden-
tical, but will look different from a genotype point of
view.

If we take a very simple example, where the geno-
type portion concerned with the hidden units for net-
works X and Y are AB and BA the problem can be
illustrated. If these two networks are selected for
mating, the offspring produced will be unlikely to
succeed in the population, as it will be missing es-
sential portions of its network - its genotype would
become AA or BB after crossover occurs. The per-
mutation problem is thought to rise at a rate of nl,
where n is the number of networks[5, 40]. Such a
situation is not conducive to the convergence of a ge-
netic algorithm and indeed has been the reason why
some researchers have abandoned the use of crossover
altogether[11, 19].

However, it has been found that the permutation
problem does not seem to have much of an impact in
the performance of genetic algorithms. In addition,
several schemes have been designed to address it.
Hancock[40] and Whitley[4] suggest assigning roles
to each of the hidden units in the network so as to
break the symmetry between otherwise identical net-
works. A system tracking the historical provenance
of genes is proposed by Stanley and Miikkulainen[17].
With this system, it is possible to ascertain the an-

cestry of a particular inherited neuron or connection,
again breaking the symmetry which causes the per-
mutation problem.

4 Conclusion

It has been shown repeatedly that the evolution of
neural networks is by far superior, both in terms of
development time and performance, to hand fabri-
cated methods of development. This paper has out-
lined the main aspects of neural network evolution
which have been researched, as well as the possible
encoding schemes for transforming the network into
a gene code used by the genetic algorithm

In terms of future directions, it is important to
note that while many evolutionary combinations have
been tried, many have not yet been combined. The
most important development has been the combina-
tion of architecture and weight evolution, but this
could be built upon by the addition of learning rule
or transfer function evolution.

There is also a need for an objective analysis and
comparison of the encoding schemes presented, par-
ticularly the indirect variety. Many of these lack a
theoretical basis for their existence and while many
have proven to be superior to direct schemes, some
have been found to be equivalent. It is also inter-
esting to note that the permutation problem, while
it has raised concerns, has not hindered the use of
schemes which fall prey to it and that but for a few
exceptions, many rely on the crossover operator to
power their genetic algorithm.

Finally, whilst some research has been done on
the collaborative aspects of genetic algorithm pop-
ulations, it would be interesting to ascertain if the
addition of communication could yield better results
to the evolutionary process.

References

[1] R. S. Sutton. Two problems with backpropaga-
tion and other steepest-descent learning proce-
dures for networks. In Proc. of 8th Annual Conf.
of the Cognitive Science Society, pages 823-831,
1986.

[2] John F. Kolen and Jordan B. Pollack. Back
propagation is sensitive to initial conditions.
In Richard P. Lippmann, John E. Moody, and
David S. Touretzky, editors, Advances in Neu-
ral Information Processing Systems, volume 3,
pages 860-867. Morgan Kaufmann Publishers,
Inc., 1991.

[3] T. Sasaki and M. Tokoro. Evolving learnable
neural networks under changing environments
with various rates of inheritance of acquired
characters: Comparison between darwinian and
lamarckian evolution. Artificial Life, 5(3):203—
223, 1999.

[4] D. Whitley, T. Starkweather, and C. Bogart. Ge-
netic algorithms and neural networks: Optimiz-
ing connections and connectivity. Parallel Com-
puting, 14:347-361, 1990.

[5] Richard K. Belew, John McInerney, and Nicol N.
Schraudolph. Evolving networks: Using the
genetic algorithm with connectionist learning.
In Christopher G. Langton, Charles Taylor,
J. Doyne Farmer, and Steen Rasmussen, edi-
tors, Artificial Life II, pages 511-547. Addison-
Wesley, Redwood City, CA, 1992.

[6] D. J. Montana and L. Davis. Training feed-
forward neural networks using genetic algo-
rithms. In Proceedings of the FEleventh Inter-
national Joint Conference on Artificial Intelli-
gence, pages 762-767. San Mateo, CA: Morgan
Kaufmann., 1989.

[7] H. de Garis. Genetic programming: building
artificial nervous systems using genetically pro-
grammed neural network modules. In B. W.
Porter and R. J. Mooney, editors, Machine

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Learning: Proceedings of the Seventh Interna-
tional Conference, pages 132-139, Austin, TX,
21-23 1990. Morgan Kaufmann, Palo Alto, CA.

J. Branke. Evolutionary algorithms for neu-
ral network design and training. Technical Re-
port No. 822, University of Karlsruhe, Institute
AIFB, 1995.

K. Chellapilla and D. B. Fogel. Evolving neural
networks to play checkers without relying on ex-
pert knowledge. IEEE Trans. Neural Networks,
10(6):1382-1391, 1990.

Peter J. Angeline, Gregory M. Saunders, and
Jordan P. Pollack. An evolutionary algorithm
that constructs recurrent neural networks. IJEEE
Transactions on Neural Networks, 5(1):54-65,
January 1994.

Xin Yao. Evolving artificial neural networks. In
Proceedings of the IEEE, pages 1423-1447, 1999.

John R. Koza and James P. Rice. Genetic gen-
eration of both the weights and architecture for
a neural network. In International Joint Confer-
ence on Neural Networks, IJCNN-91, volume II,
pages 397-404, Washington State Convention
and Trade Center, Seattle, WA, USA, 8-12 1991.
IEEE Computer Society Press.

P. M. Todd G. F. Miller and S. U. Hedge.
Designing neural networks using genetic algo-
rithms. In Proceedings of the Third International
Conference onGenetic Algorithms and Their Ap-
plications, pages 379-384, 1989.

H. Kitano. Designing neural networks using ge-
netic algorithm with graph generation system.
Complex Systems, 4:461-476, 1990.

Steven Harp and Tariq Samad. Genetic synthe-
sis of neural network architecture. In L. Davis,
editor, Handbook of Genetic Algorithms, pages
202-221. Van Nostrand Reinhold, 1991.

Sean Luke and Lee Spector. Evolving graphs and
networks with edge encoding: Preliminary re-
port. In John R. Koza, editor, Late Breaking Pa-

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

pers at the Genetic Programming 1996 Confer-
ence Stanford University July 28-31, 1996, pages
117-124, Stanford University, CA, USA, 28-31
1996. Stanford Bookstore.

K. Stanley and R. Miikkulainen. Evolving neural
networks through augmenting topologies. tech-
nical report ai01-290. Technical report, Depart-
ment, of Computer Science, University of Texas
as Austin, 2001.

David W. White. GANNet: A genetic algorithm
for searching topology and weight spaces in neu-
ral network design. PhD thesis, University of
Maryland College Park, 1994.

Xin Yao and Yong Liu. Evolving artificial
neural networks through evolutionary program-
ming. In Evolutionary Programming, pages 257—
266, 1996.

Edward B. Allen Robert Hochman, Taghi
M. Khosgoftaar and John P. Hudepohl. Using
the genetic algorithm to build optimal neural
networks for fault-prone module detection.

F. Gruau. Neural Network Synthesis using
Cellular Encoding and the Genetic Algorithm.
PhD thesis, Centre d’etude nucleaire de Greno-
ble, Ecole Normale Superieure de Lyon, France,
1994.

R.A. Browse, T.S. Hussain, and M.B. Smillie.
Using attribute grammars for the genetic selec-
tion of backpropagation networks for character
recognition. Proceedings of Applications of Ar-
tificial Neural Networks in Image Processing IV
(January 25-28, San Jose, CA), 1999.

V. Maniezzo. Searching among search spaces:
Hastening the genetic evolution of feedforward
neural networks. In R. F. Albrecht, C. R.
Reeves, and N. C. Steele, editors, Artificial Neu-
ral Nets and Genetic Algorithms, pages 635—643.
Springer-Verlag, 1993.

B. Zhang and H. Muhlenbein. Evolving optimal
neural networks using genetic algorithms with

[25]

[26]

[27]

[28]

[29]

[30]

31]

[32]

[33]

occam’s razor.

199-220, 1993.

Complex Systems 7(3), pages

N. Richards, D.E. Moriarty, and R. Miikku-
lainen. Evolving neural networks to play go. Ap-
plied Intelligence, 8:85-96, 1997.

P. Koehn. Combining genetic algorithms and
neural networks: The encoding problem. PhD
thesis, University of Erlangen and The Univer-
sity of Tennessee, Knoxville, 1994.

J. H. Holland. Adaptation in Natural and Artifi-
cial Systems. Ann Arbor MI: The University of
Michigan Press, 1975.

D. E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Reading,
MA, Addison-Wesley, 1989.

Frederic Gruau. Automatic definition of mod-
ular neural networks. Adaptive Behaviour,
3(2):151-183, 1995.

W. Schiffmann, M. Joost, and R. Werner. Appli-
cation of genetic algorithms to the construction
of topologies for multilayer perceptrons. In Pro-
ceedings of the International Conference on Ar-
tificial Neural Networks and Genetic Algorithms,
pages 675-682, 1993.

Jodo Carlos Figueira Pujol and Riccardo Poli.
Efficient evolution of asymmetric recurrent
neural networks using a PDGP-inspired two-
dimensional representation. Lecture Notes in
Computer Science, 1391, 1998.

M. Mandischer. Representation and evolution
of neural networks. In R. F. Albrecht, C. R.
Reeves, and N. C. Steele, editors, Artificial Neu-
ral Nets and Genetic Algorithms Proceedings of
the International Conference at Innsbruck, Aus-
tria, pages 643—649. Springer, Wien and New
York, 1993.

David E. Moriarty and Risto Miikkulainen. Dis-
covering complex othello strategies through evo-
lutionary neural networks, 1995.

[34]

[35]

[36]

[37]

[38]

[39]

[40]

A. Siddiqi and S. Lucas. A comparison of ma-
trix rewriting versus direct encoding for evolving
neural networks. Proc. of the 1998 IEEE Inter-
national Conference on Evolutionary Computa-
tion, pages 392-397, 1998.

F. Gruau, D. Whitley, and L. Pyeatt. A com-
parison between cellular encoding and direct en-
coding for genetic neural networks. In J. R.
Koza, D. E. Goldberg, D. B. Fogel, and R. L.
Riolo, editors, Genetic Programming 1996: Pro-
ceedings of the First Annual Conference, pages
81-89. MIT Press.

E.JJW. Boers and H. Kuiper. Biological
Metaphors and the Design of Artificial Neural
Networks. Master’s thesis, Niels Bohrweg 1,
2333 CA, Leiden, The Netherlands, aug 1992.

H.-M. Voigt, J. Born, and I. Santibanez-Koref.
Evolutionary structuring of artificial neural net-
works. Technical Report TR-02-93, TU Berlin,
1993.

D. Parisi A. Cangelosi and S. Nolfi. Cell divi-
sion and migration in a ’genotype’ for neural net-
works. Network: computation in neural systems,
5(4), 1994.

S. Nolfi and D. Parisi. Growing neural networks.
Technical Report, Institute of Psychology, CNR
Rome, 1992.

P. J. B. Hancock. Pruning neural nets by genetic
algorithm. In I. Aleksander and J.G. Taylor, edi-
tors, Proceedings of the International Conference
on Artificial Neural Networks, Brighton, pages
991-994. Elsevier, 1992.

