On the Design of an Artificial Life Simulator

Dara Curran, Colm O’Riordan

Dept. of Information Technology
National University of Ireland, Galway.

keywords: Artificial life, simulation, neural networks, genetic algorithms

Abstract. This paper describes the design of an artificial life simulator.
The simulator uses a genetic algorithm to evolve a population of neural
networks to solve a presented set of problems. The simulator has been
designed to facilitate experimentation in combining different forms of
learning (evolutionary algorithms and neural networks). We present re-
sults obtained in simulations designed to examine the effect of individual
life—time learning on the population’s performance as a whole.

1 Introduction

Genetic algorithms have long been used as an efficient approach to solution
optimisation[1]. Based on a Darwinian evolutionary scheme, potential solutions
are mapped to genetic codes which, in the case of the canonical genetic algorithm,
are represented by bit patterns. Each of these solutions is tested for validity and
a portion are selected to be combined to create the next generation of solutions.
Using this mechanism in a iterative manner, the approach has been shown to
solve a variety of problems[2].

Artificial neural networks are a method of machine learning based on the bio-
logical structure of the nervous systems of living organisms. A neural network is
composed of nodes and interconnecting links with associated adjustable weights
which are modified to alter a network’s response to outside stimuli. Through a
process of training, a neural network’s error can be iteratively reduced to improve
the network’s accuracy.

The focus of this paper is on the design and development of an artificial life
simulator which combines both genetic algorithm and neural network techniques.
An initial set of experiments is also presented, which examines the relationship
between life~time learning and increased population fitness.

The next section discusses in more detail some limitations of genetic algo-
rithms and neural networks when used in isolation and presents some of the
successful work which has been carried out using a combination of the two ap-
proaches. Section 3 presents the simulator’s architecture, including the encoding
mechanism employed and Section 4 outlines the initial experiments carried out
with the simulator.



2 Related Work

While the individual use of genetic algorithms and neural networks has been
shown to be successful in the past, there are disadvantages associated with both
approaches. The learning algorithm employed by neural network implementa-
tions is frequently based on back propagation or a similar gradient descent tech-
nique employed to alter weighting values. These algorithms are liable to become
trapped in local maxima and in addition, it is difficult to foresee a neural network
architecture design to solve a given problem][3, 4].

Genetic algorithms may also become trapped in local maxima and, further-
more, they require that potential solutions to a given problem be mapped to
genetic codes. Not all problems are readily converted to such a scheme[1].

The combination of neural networks and genetic algorithms originally stemmed
from the desire to generate neural network architectures in an automated fashion
using genetic algorithms[5, 6]. The advantage of this approach is that neural net-
works can be selected according to a variety of criteria such as number of nodes,
links and overall accuracy. The neural network component, on the other hand,
provides computational functionality at an individual level within the genetic
algorithm’s population. The combination of genetic algorithms and neural net-
works has since been proven successful in a variety of problem domains ranging
from the study of language evolution[7] to games[8].

3 Simulator Architecture

The architecture of the simulator is based on a hierarchical model (figure 1).
Data propagates from the simulator’s interface down to the simulator’s lowest
level. The neural network and genetic algorithm layers generate results which
are then fed back up to the simulator’s highest level.

Command Interpreter

Neural Network

o~

Encoding Decoding

Genetic Algorithm

Fig. 1. Simulator Architecture




3.1 Command Interpreter Layer

The command interpreter is used to receive input from users in order to set
all variables used by the simulator. The interpreter supports the use of scripts,
allowing users to store parameter information for any number of experiments.

3.2 Neural Network Layer

The neural network layer generates a number of networks using variables set
by the command interpreter and initialises these in a random fashion. Once
initialisation is complete, the network layer contains a number of neural networks
ready to be trained or tested.

Training Several algorithms exist to alter the network’s response to input so as
to arrive at the correct output. In this system, the back propagation algorithm is
used. Error reduction is achieved by altering the value of the weights associated
with links connecting the nodes of the network. Each exposure to input and
subsequent weight altering is known as a training cycle.

Testing Testing allows the simulator to ascertain how well each network solves
a given problem. The output for each network is used by the selection process
in the genetic algorithm layer.

3.3 Encoding and Decoding Layers

To perform genetic algorithm tasks, the neural network structures must be con-
verted into gene codes on which the genetic algorithm will perform its operations.
This conversion is carried out by the encoding layer. Once the genetic algorithm
has generated the next generation, the decoding layer converts each gene code
back to a neural network structure to be trained and tested. The encoding and
decoding layers follow the scheme outlined in Section 3.5.

3.4 Genetic Algorithm Layer

The genetic algorithm layers is responsible for the creation of successive gener-
ations and employs three operators: selection, crossover and mutation.

Selection The selection process employed uses linear based fitness ranking to
assign scores to each individual in the population and roulette wheel selection
to generate the intermediate population.



Crossover As a result of the chosen encoding scheme, crossover may not operate
at the bit level as this could result in the generation of invalid gene codes.
Therefore, the crossover points are restricted to specific intervals — only whole
node or link values may be crossed over.

Two—point crossover is employed in this implementation. Once crossover
points are selected, the gene portions are swapped. The connections within each
portion remain intact, but it is necessary to adjust the connections on either
side of the portion to successfully integrate it into the existing gene code. This
is achieved by using node labels for each node in the network. These labels are
used to identify individual nodes and to indicate the location of interconnections.
Once the portion is inserted, all interconnecting links within the whole gene code
are examined. If any links are now pointing to non—existing nodes, the link is
changed to point to the nearest labelled node.

Mutation The mutation operator introduces additional noise into the genetic
algorithm process thereby allowing potentially useful and unexplored regions
of problem space to be probed. The mutation operator usually functions by
making alterations on the gene code itself, most typically by altering specific
values randomly selected from the entire gene code. In this implementation,
weight mutation is employed. The operator takes a weight value and modifies it
according to a random percentage in the range -200% — +200%.

3.5 Encoding and Decoding Schemes

Before the encoding and decoding layers can perform their respective tasks, it is
necessary to arrive at a suitable encoding scheme. Many schemes were consid-
ered in preparation of these experiments, prioritising flexibility, scalability, diffi-
culty and efficiency. These included Connectionist Encoding[6], Node Based En-
coding[9], Graph Based Encoding[10], Layer Based Encoding[11], Marker Based
Encoding[8], Matrix Re—writing[12, 13], Cellular Encoding[14], Weight—based en-
coding[3, 4] and Architecture encoding[15].

The scheme chosen is based on Marker Based Encoding which allows any
number of nodes and interconnecting links for each network giving a large num-
ber of possible neural network permutations.

Marker based encoding represents neural network elements (nodes and links)
in a binary string. Each element is separated by a marker to allow the decoding
mechanism to distinguish between the different types of element and therefore
deduce interconnections[12, 13].

In this implementation, a marker is given for every node in a network. Fol-
lowing the node marker, the node’s details are stored in sequential order on the
bit string. This includes the node’s label and its threshold value. Immediately
following the node’s details, is another marker which indicates the start of one
or more node—weight pairs. Each of these pairs indicates a back connection from
the node to other nodes in the network along with the connection’s weight value.
Once the last connection has been encoded, the scheme places an end marker to
indicate the end of the node’s encoding.



The scheme has several advantages over others:

- Nodes can be encoded in any particular order, as their role within the net-
work is determined by their interconnecting links.

- The network structures may grow without restriction—any number of nodes

can be encoded along with their interconnections.

Links between nodes can cross layer boundaries. For instance, a node in the

input layer may link directly to a node in the output layer, even if there are

many layers between the two.

The system encodes individual weighting values as real numbers, which elim-

inates the ‘flattening’ of the learned weighting values which can occur when

real number values are forced into fixed bit-size number values.

The decoding mechanism must take the gene codes and generate neural net-
work data structures ready to be trained or tested. Any decoding mechanism em-
ployed must be robust and tolerate imperfect gene codes. A number of anomalies
may occur after networks have been crossed over:

- Data may occasionally appears between an end marker or start marker. In
such a circumstance the decoder ignores the data as it is no longer retrievable.

- It is possible that extra start or end markers be present within a node def-
inition. In such a case, two choices are possible: either the new marker and
its contents is ignored, or the previous section is ignored and the new one is
taken as valid. The current implementation follows the latter approach.

- A start marker may have no corresponding end marker or vice—versa. In such
a situation, the decoder ignores the entire section of the gene code.

4 Experiments

The problem set employed for these experiments was 5-bit parity. Each net-
work was exposed to 5-bit patterns and trained to determine the parity of each
pattern. The number of training iterations was also varied from 0, 10 and 100
iterations. The crossover rate was set to 0.75 and the mutation rate to 2%. Three
experiments were carried out in total with 500 networks in each generation for
600 generations. The general aim of these experiments was twofold: to demon-
strate the validity of the simulator and to ascertain how much the training or
learning process affects each population’s fitness. The experimental results are
shown in figure 2.

No training When the genetic algorithm is used in isolation without the help
of the learning process, the population’s fitness shows very little improvement
in the first 200 generations. There is then a slight increase in fitness leading to
further stagnation at around the 0.3 fitness level. The genetic algorithm alone is
unable to generate a successful population for this problem set.



1 1 1 1 1 1

B ""“I.(\‘”,\"‘;,,‘,,nv’,,n..\u.,.,«,«'l\”,n“.\n
M

09} ! ok b

g

A
at “,.“M'

08} Il ,,HI’ J
Ly l' ’
M {\r'
of ot
0.7 F ' / b
; A
I ’ el
/
2 o6} W p g
= /»
N v
J b d™
05F " W J
L o
3
" ‘.‘l’\
' J
04} et o J

e e

b
! A
o 4
0.3 '.,\“1"") E
3EL
No Trainin

Training x 10— — -
Training x 100- - -

0 100 200 300 400 500 600
Generations

0.2

Fig. 2. Population Fitness For 0-100 Training cycles

10 Training Iterations The addition of training shows that even a modest
increase in the population’s individual learning capability, enables the simulator
to achieve very high levels of fitness. The fitness level ascends steadily to 0.85
before leveling out at nearly 0.9. At this level of fitness most individuals in the
population are capable of solving all 32 solutions in the 5—bit parity problem.

100 Training iterations Once the networks receive more training, the advan-
tages of the training process become obvious. The population’s fitness increases
along a steep curve before jumping 0.3 points in 100 generations. The curve then
levels out at around 0.95 - the highest level of fitness attained in this experiment
set.

5 Conclusion

The results achieved with the simulator seem to indicate that population learn-
ing alone is not capable of solving problems of a certain difficulty. Once lifetime
learning is introduced, the training process guides the population towards very
high levels of fitness. The fact that the population is capable of acheiving such
high levels from little training (in the case of the 10 Training iterations exper-
iment) shows that this approach should be capable of solving more complex
problems.

6 Acknowledgements

This research is funded by the Irish Research Council for Science, Engineering
and Technology.



References

1.

2.

10.

11.

12.

13.

14.

15.

J. H. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor MI: The
University of Michigan Press, 1975.

D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Reading, MA, Addison-Wesley, 1989.

R. S. Sutton. Two problems with backpropagation and other steepest-descent
learning procedures for networks. In Proc. of 8th Annual Conf. of the Cognitive
Science Society, pages 823-831, 1986.

John F. Kolen and Jordan B. Pollack. Back propagation is sensitive to initial
conditions. In Richard P. Lippmann, John E. Moody, and David S. Touretzky,
editors, Advances in Neural Information Processing Systems, volume 3, pages 860—
867. Morgan Kaufmann Publishers, Inc., 1991.

Peter J. Angeline, Gregory M. Saunders, and Jordan P. Pollack. An evolutionary
algorithm that constructs recurrent neural networks. IEEE Transactions on Neural
Networks, 5(1):54-65, January 1994.

Richard K. Belew, John MclInerney, and Nicol N. Schraudolph. Evolving networks:
Using the genetic algorithm with connectionist learning. In Christopher G. Lang-
ton, Charles Taylor, J. Doyne Farmer, and Steen Rasmussen, editors, Artificial
Life II, pages 511-547. Addison-Wesley, Redwood City, CA, 1992.

B. MacLennan. Synthetic ethology: An approach to the study of communication.
In Artificial Life II: The Second Workshop on the Synthesis and Simulation of
Living Systems, Santa Fe Institute Studies in the Sciences of Complezity, pages
631-635, 1992.

David Moriarty and Risto Miikkulainen. Discovering complex othello strategies
through evolutionary neural networks. Connection Science, 7(3-4):195-209, 1995.
David W. White. GANNet: A genetic algorithm for searching topology and weight
spaces in neural network design. PhD thesis, University of Maryland College Park,
1994.

J. C. F. Pujol and R. Poli. Efficient evolution of asymmetric recurrent neural net-
works using a two-dimensional representation. In Proceedings of the First European
Workshop on Genetic Programming (EUROGP),, pages 130-141, 1998.

M. Mandischer. Representation and evolution of neural networks. In R. F. Al-
brecht, C. R. Reeves, and N. C. Steele, editors, Artificial Neural Nets and Ge-
netic Algorithms Proceedings of the International Conference at Innsbruck, Aus-
tria, pages 643-649. Springer, Wien and New York, 1993.

H. Kitano. Designing neural networks using genetic algorithm with graph genera-
tion system. In Complex Systems, 4, 461-476, 1990.

P. M. Todd G. F. Miller and S. U. Hedge. Designing neural networks using ge-
netic algorithms. In Proceedings of the Third International Conference onGenetic
Algorithms and Their Applications, pages 379-384, 1989.

F. Gruau. Neural Network Synthesis using Cellular Encoding and the Genetic Algo-
rithm. PhD thesis, Centre d’etude nucleaire de Grenoble, Ecole Normale Superieure
de Lyon, France, 1994.

John R. Koza and James P. Rice. Genetic generation of both the weights and
architecture for a neural network. In International Joint Conference on Neural
Networks, IJCNN-91, volume II, pages 397-404, Washington State Convention
and Trade Center, Seattle, WA, USA, 8-12 1991. IEEE Computer Society Press.



