
1

Arti�cial Life Simulation Using Marker-Based
Encoding

Dara Curran
Dept. of Information Technology,

National University of Ireland, Galway.
and

Colm O' Riordan
Dept. of Information Technology,

National University of Ireland, Galway.

keywords: Arti�cial life, simulation, neural networks, genetic algorithms

Abstract

This paper describes the design of an arti�cial life simulator. The simulator uses a genetic algorithm to evolve a population of neural
networks to solve a presented set of problems. The simulator has been designed to facilitate experimentation in combining di�erent forms of
learning (evolutionary algorithms and neural networks). We present results obtained in simulations where the population is evolved to solve
certain problems. The simulations are designed to show the population's progress when presented with problems of increasing di�culty using
evolutionary algorithms and neural networks both individually and in combination.

I. Introduction

The combination of genetic algorithms and neural networks provides a framework for tackling often intractable prob-
lems which would be di�cult to approach using either method in isolation. Combining the evolutionary approach of
genetic algorithms with the active data processing capability of neural networks has proved successful in the past. In a
typical implementation, the genetic algorithm is utilised to generate a population of random network architectures, each
of which is trained and tested to evaluate its performance. The genetic codes of successful networks are then combined
to create the next generation. As the genetic algorithm can be designed to select particular network characteristics
(such as small number of nodes and links), the approach yields very e�cient neural network architectures with little or
no human intervention.
The focus of this paper is the development of an arti�cial life simulator combining genetic algorithms and neural

networks to solve a given problem set. The purpose of the simulator is to ascertain to what degree the addition of the
neural network capability aids the discovery of optimum solutions. This was achieved through a set of experiments with
problem sets of increasing complexity.
The remainder of the paper is organised as follows. The next section describes both neural networks and genetic

algorithms and approaches to combine the two. Section 3 outlines the architecture and functionality of the simulator.
Section 4 describes the set of experiments used as well as the results obtained.

II. Related work

Genetic algorithms have long been used as an e�cient approach to solution optimisation[1]. Based on a Darwinian
evolutionary scheme, potential solutions are mapped to genetic codes which, in the case of the canonical genetic algorithm,
are represented by bit patterns. Each of these solutions is tested and a portion are selected to be combined to create
the next generation of solutions. Using this mechanism in a iterative manner, the approach has been shown to solve a
variety of problems[2].
Arti�cial neural networks are an alternative method of machine learning based on the biological structure of the

nervous systems of living organisms. A neural network is composed of nodes and interconnecting links with adjustable
weights which are modi�ed in order to alter a network's response to outside stimuli. In arti�cial neural networks, these
stimuli take the form of bit patterns which are fed to the network via entry input nodes. The stimulus signal is altered
by its movement through the network arriving �nally at the output nodes as the network's response. Through a process
of training, the network adjusts its links, thereby altering its response to particular stimuli. This modi�cation process
occurs through a learning algorithm which typically examines the network's output and compares it with pre-de�ned
correct responses. A measure of error is thereby extracted and links are altered to reduce the error for the next training
iteration.
While the two approaches have bene�ts in their own right, there are disadvantages associated with their use. Not

all problems and solutions may be readily mapped to the genetic code structure which the genetic algorithm requires.
Arti�cial neural networks implementations may also su�er from this problem, but the real issue is the design of the



2

network's architecture and link structures. It can be very di�cult to ascertain the optimal number of nodes, links and
weight values for a network for a given problem.
To address this latter issue, a combination of genetic algorithms and neural networks has been proven to be successful

in a variety of problem domains ranging from neural network design optimisation [3], [4], [5] to games[6], [7].

III. Experimental Setup

The architecture of the arti�cial life simulator can be seen as a hierarchical structure. At the top-level of the simulator
is a command interpreter which allows users to de�ne an experiment's variables including the number of networks, the
number of generations to run the experiment, mutation and crossover rates and the actual problem set which the
population will be attempting to solve.
The neural network layer takes the variables set using the command interpreter and initialises a given number of

neural networks. The layer then performs training and testing of the networks according to the parameters of the
experiment. These network memory structures are then passed to the encoding layer which transforms them into
genetic code structures for use in the genetic algorithm. The encoding mechanism used for this set of experiments is a
modi�ed version of marker based encoding.
The genetic algorithm layer uses the genetic codes and the data retrieved from the neural network layer's testing of

the networks to perform its genetic operators on the population. A new population is produced in the form of genetic
codes. These are passed to the decoding layer which transforms each code into a new neural network structure. These
structures are then passed up to the neural network layer for a new experiment iteration. Once the required number of
generations has been reached the experiment �nishes.
The simulator therefore only provides a framework for which each component must be built. The standard simulator

as used in these experiments contains a number of default components for each of the layers, but these can easily
be expanded upon to include more complex functionality. The next sections outline the functionality of the default
components of the simulator used in the experiments.

A. Genetic Operators

In order to generate new genetic material, the parents of new networks undergo the process of crossover. The operator
selects points along each parent gene code and swaps portions of the gene code within each parent. Two new networks
are created in this manner. Two-point crossover is employed in this implementation (any type could be employed).
The mutation operator introduces additional noise into the genetic algorithm process thereby allowing potentially

useful and unexplored regions of problem space to be probed. The mutation operator usually functions by making
alterations on the gene code itself, most typically by altering speci�c values randomly selected from the entire gene code.
In this set of experiments, weight mutation is employed. A bit-level approach utilising Gray encoding was considered

for this operator but was abandoned after several trial experiments. Instead a more broad mutation operator is now
used. This takes the weight value and increases/decreases the value according to a random percentage (200%). This
approach was found, empirically, to be more successful and was adopted for this set of experiments.

IV. Experiments

The problem set employed for these experiments was n-bit parity. Each network was exposed to 3 and 4 bit patterns
and trained to determine the parity of each pattern. The number of training iterations was also varied from 0, 10 and 100
iterations. Six experiments were carried out with populations of 500 networks spanning 500-1000 generations although
in some cases the experiment was cut short because of evident �tness stagnation. The general aim of these experiments
was twofold: to demonstrate the validity of the simulator and to ascertain how much the training or learning process
a�ects each population's �tness with an increasingly di�cult problem set.

A. 3 bit parity

This initial set of experiments exposes the population to 3-bit parity patterns and represents a problem of modest
di�culty since a neural network must evolve to solve all 9 solutions to attain high levels of �tness.

A.1 No Training

With no training, it is clear that the population has di�culty in attaining high levels of �tness (�gure 1). The graph
begins with a stagnation period after which a �tness jump occurs, but does not result in a large scale �tness climb. The
�tness of the population has not stagnated however, rather it appears to be climbing at a much reduced rate. It may be
possible that given enough time, the experiment would have resulted in higher levels of �tness than those illustrated.

A.2 10 Training Iterations

When the networks are given some training, an interesting phenomenon occurs. The graph appears to be much
smoother than the previous experiment, but the shape of the population's �tness progress is almost identical (�gure



3

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

F
itn

es
s

Generations

3 Bit Parity - Training x 0 

Fig. 1. 3 bit parity-no training

2). There is a clear stagnation of �tness even after the jump occurs. It would seem that the learning process is only
ful�lling one of its characteristic tasks, that of smoothing the population's progress. It has not, however aided in the
actual �tness of the population.

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

F
itn

es
s

Generations

3 Bit Parity - Training x 10

Fig. 2. 3 bit parity-10 training iterations

A.3 100 Training Iterations

Given more training iterations, the population immediately rises to very high levels of �tness (�gure 3). This indicates
that some threshold of training iterations exists for this problem. Clearly, for the 3-bit parity problem, a higher level of
learning is required to make good progress.

B. 4 bit parity

This second set of experiments contains the most interesting results, as it represents the most di�cult problem of the
set. The number of solutions has increased to 16, thus requiring a signi�cantly more complex neural network architecture
to be evolved.

B.1 No Training

The di�culty of the 4-bit parity problem can be clearly witnessed when examining the results of the no training
experiment (�gure 4). There is little progress in the population's �tness throughout the experiment. Only after 500



4

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700

F
itn

es
s

Generations

3 Bit Parity - Training x 100

Fig. 3. 3 bit parity-100 training iterations

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

F
itn

es
s

Generations

4 Bit Parity - Training x 0 

Fig. 4. 4 bit parity-no training

generations is there any indication that the genetic operators are functioning at all. Clearly the problem is too complex
for the genetic algorithm to solve unaided in any reasonable length of time.

B.2 10 Training Iterations

When some training is introduced, a certain amount of progress is made by the population (�gure 5). A substantial
�tness jump occurs at generation 450, but the �tness �attens out soon after at around 0.4. The learning process is
aiding the genetic operators, but in this case it is not enough. The population's �tness following the initial jump shows
no signs of improving, even if the experiment was continued further.

B.3 100 Training Iterations

The �nal �gure illustrates the fact that the more di�cult a problem becomes, the more the learning process is needed
to guide the evolution of the neural network population (�gure 6). There is a huge jump in �tness towards the beginning
of the experiment, giving rise to a continual rise in �tness reaching to more than 0.9 indicating that the problem has
been solved by the population.

V. Conclusion

The results achieved with the Arti�cial Life simulator indicate that for simple problems, the genetic algorithm com-
ponent of the simulator is capable of guiding the population towards acceptable levels of �tness. However, as the



5

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

F
itn

es
s

Generations

4 Bit Parity - Training x 10

Fig. 5. 4 bit parity-10 training iterations

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

F
itn

es
s

Generations

4 Bit Parity - Training x 100

Fig. 6. 4 bit parity-100 training iterations

problem di�culty increases, this component becomes less and less capable of sustaining population �tness growth. In
these cases, it is apparent that the learning mechanism is increasingly required and that without it, the population is
not capable of survival. In conclusion, the simulator has shown itself capable of solving this set of problems. Future
work will concentrate on problems of increased complexity and the e�ects of environment changes on the robustness of
populations.

VI. Acknowledgements

This research is funded by the Irish Research Council for Science, Engineering and Technology.

References

[1] J. H. Holland. Adaptation in Natural and Arti�cial Systems. Ann Arbor MI: The University of Michigan Press, 1975.
[2] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA, Addison-Wesley, 1989.
[3] D. Whitley, T. Starkweather, and C. Bogart. Genetic algorithms and neural networks: Optimizing connections and connectivity, 1990.
[4] R. K. Belew, J. McInerney, and N. N. Schraudolph. Evolving networks: Using the genetic algorithm with connectionist learning. In C. G.

Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors, Arti�cial Life II, pages 511�547. Addison-Wesley, Redwood City, CA, 1992.
[5] X. Yao. Evolving arti�cial neural networks. PIEEE: Proceedings of the IEEE, 87, 1999.
[6] D. Moriarty and R. Miikkulainen. Discovering complex othello strategies through evolutionary neural networks. Connection Science,

7(3�4):195�209, 1995.
[7] N. Richards, D. Moriarty, P. McQuesten, and R. Miikkulainen. Evolving neural networks to play go. In Proceedings of the 7th International

Conference on Genetic Algorithms, East Lansing, MI, 1997.


