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Abstract- This paper examines the effect of cultural
learning on a population of neural networks. We com-
pare the genotypic and phenotypic diversity of popula-
tions employing only population learning and of popu-
lations using both population and cultural learning in a
dynamic environment. We show that cultural learning is
capable of achieving higher fitness levels and maintains
a higher level of genotypic and phenotypic diversity.

1 Introduction

A number of learning models may be readily observed from
nature and have been the focus of much study in artificial in-
telligence research. Population learning (i.e. learning which
occurs at a population level through genetic material) is typ-
ically simulated using genetic algorithms. Life-time learn-
ing (i.e. learning which takes place during an organisms’s
life time through reactions with its environment) can be sim-
ulated in a variety of ways, typically employing neural net-
works or reinforcement learning models.

A relatively new field of study in artificial intelligence is
synthetic ethology. The field is based on the premise that
language and culture are too complex to be readily analysed
in nature and that insight can be gained by simulating its
emergence in populations of artificial organisms. While
many studies have shown that lexical, syntactical and gram-
matical structures may spontaneously emerge from popu-
lations of artificial organisms, few discuss the impact such
structures have on the relative fitness of individuals and of
the entire population.

A robust multi–agent system should be able to withstand
and adapt to environmental changes. This type of behaviour
parallels that of the natural world where species capable of
adaptation will have more chance of evolutionary success
than ones that are rigid and incapable of such plasticity. At
its most basic level, adaptation in nature takes the form of
population learning. At a higher level, organisms capable
of adapting their behaviour to suit a particular environment
during their lifetimes will be more likely to survive in the
long term.

The focus of this paper is to attempt to understand the
effect of cultural learning on a population of artificial or-
ganisms subjected to a dynamic environment. This is ac-
complished by studying its effect on the population’s fitness
as well as its genotypic and phenotypic diversity. The re-
mainder of this paper is arranged as follows. Section 2 in-
troduces background research, including descriptions of di-
versity measures and cultural learning techniques that have
been employed for this study. Section 3 describes the arti-

ficial life simulator employed for the experiments. Section
4 describes the experimental setup. Section 5 outlines the
experiment results and Section 5 presents conclusions.

2 Background research

2.1 Cultural Learning

Culture can be succinctly described as a process of infor-
mation transfer within a population that occurs without the
use of genetic material. Culture can take many forms such
as language, signals or artifactual materials. Such informa-
tion exchange occurs during the lifetime of individuals in a
population and can greatly enhance the behaviour of such
species. Because these exchanges occur during an individ-
ual’s lifetime, cultural learning can be considered a subset
of lifetime learning.

An approach known as synthetic ethology [13, 19] ar-
gues that the study of language is too difficult to perform
in real world situations and that more meaningful results
could be produced by modeling organisms and their envi-
ronment in an artificial manner. Artificial intelligence sys-
tems can create tightly controlled environments where the
behaviour of artificial organisms can be readily observed
and modified. Using genetic algorithms, the evolutionary
approach inspired by Darwinian evolution, and the comput-
ing capacity of neural networks, artificial intelligence re-
searchers have been able to achieve very interesting results.

In particular, experiments conducted by Hutchins and
Hazlehurst [11] simulate cultural evolution through the use
of a hidden layer within an individual neural network in the
population. This in effect, simulates the presence of a Lan-
guage Acquisition Device (LAD), the physiological com-
ponent of the brain necessary for language development, the
existence of which was first suggested by Chomsky [5]. The
hidden layer acts as a verbal input/output layer and performs
the task of feature extraction used to distinguish different
physical inputs. It is responsible for both the perception and
production of signals for the agent.

A number of approaches were considered for the im-
plementation of cultural learning including fixed lexicons
[21, 4], indexed memory [18], cultural artifacts [10, 3] and
signal–situation tables [13]. The approach chosen was the
teacher/ pupil scenario [1, 6, 4] where a number of highly fit
agents are selected from the population to act as teachers for
the next generation of agents, labelled pupils. Pupils learn
from teachers by observing the teacher’s verbal output and
attempting to mimic it using their own verbal apparatus. As
a result of these interactions, a lexicon of symbols evolves



to describe situations within the population’s environment.

2.2 Diversity

Diversity measures typically quantify the differences be-
tween individuals in a population. It is commonly accepted
that a population that is capable of maintaining diversity
will avoid premature convergence and local maxima.

Diversity measures for populations of neural networks
have been the focus of considerable research, focusing
mainly on genotypic diversity [20, 17, 2]. Many methods
exist for the calculation of genotypic diversity, many based
on binary representations. For the purposes of this research
however, many schemes are unsuitable due to the nature of
the marker-based encoding scheme used to represent each
neural network.

Our scheme examines each block of the encoding and
compares it to blocks of similar length in other encodings.
Each encoding block contains a single node and a number
of links emanating from that node. It is therefore intuitive to
propose that blocks of similar length (having a similar num-
ber of emanating links) are suitable for mutual comparison.

There is comparatively little research on phenotypic di-
versity in evolutionary computation. Typically, phenotypic
diversity is measured at the fitness level [7]. However, this
measure tends to compress the available diversity informa-
tion resulting in a coarse grained measure not useful in all
situations. The approach adopted in this work is to exam-
ine the components of the fitness value of each individual,
i.e. an individual’s response to each bit-parity stimulus. By
comparing the difference between all responses (and not
just the aggregate fitness function) a finer grained measure
of phenotypic diversity can be obtained.

2.3 Changing Environments

Much research has focused on the tracking of changing en-
vironments with regard to multi–agent and artificial life sys-
tems [16, 9, 14] focusing on Latent Energy Environments
and fitness functions which vary over time. What is gener-
ally sought is the ability of a population to adapt to a change
within a reasonable length of time and to guide evolution to-
ward a level of plasticity otherwise difficult to attain.

The focus of this paper is to ascertain the effect of a
changing environment on population diversity as well as
fitness levels. While our approach to changing environ-
ments is straight-forward, it has the advantage of clarity:
agents evolve learning to distinguish between food and poi-
son bit-patterns (representing the 5-bit parity problem) and
at a certain generation, food and poison become reversed
(i.e. the bit pattern representing food now represents poison
and vice-versa).

The approach is partly based on work performed by Nolfi
et al [16] who compared the performance of a robotic agent
employing genetic evolution (population learning) and that
of agents employing back–propagation (life–time learning)
in a changing environment.

3 Simulator

The architecture of the artificial life simulator (Figure 1
can be seen as a hierarchical structure. At the top-level of
the simulator is a command interpreter which allows users
to define an experiment’s variables including the number
of networks, the number of generations to run the experi-
ment, mutation and crossover rates and the actual problem
set which the population will be attempting to solve. The
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Figure 1:Simulator Architecture

neural network layer takes the variables set using the com-
mand interpreter and initialises a given number of neural
networks. The layer then performs training and testing of
the networks according to the parameters of the experiment.
These network memory structures are then passed to the en-
coding layer which transforms them into genetic code struc-
tures for use in the genetic algorithm. The encoding mech-
anism used for this set of experiments is a modified version
of marker based encoding.

The genetic algorithm layer uses the genetic codes and
the data retrieved from the neural network layer’s testing of
the networks to perform its genetic operators on the popu-
lation. A new population is produced in the form of genetic
codes. These are passed to the decoding layer which trans-
forms each code into a new neural network structure. These
structures are then passed up to the neural network layer for
a new experiment iteration. Once the required number of
generations has been reached, the experiment finishes.

Two-point crossover is employed and weight muta-
tion is employed which takes the weight value and in-
creases/decreases the value according to a random percent-
age (200%). This approach was found, empirically, to be
more successful and was adopted for this set of experiments.

3.1 Encoding Scheme

An encoding scheme is necessary to map each agent’s
neural network structure to a genetic code. Many schemes
were considered in preparation of these experiments, priori-
tising flexibility, scalability, difficulty and efficiency. The
scheme chosen is based on Marker Based Encoding which
allows any number of nodes and interconnecting links for
each network giving a large number of possible neural net-
work permutations.



Marker based encoding represents neural network ele-
ments (nodes and links) in a binary string. Each element
is separated by a marker to allow the decoding mechanism
to distinguish between the different types of element and
therefore deduce interconnections[12, 15]. A gene code
produced using this scheme is treated as a circular entity.
Thus, the code parsing mechanism reading the end of the
gene code will begin reading the start of the gene code once
the end is reached until all available information is correctly
retrieved.

3.2 Simulating Cultural Evolution

In order to perform experiments related to cultural evolu-
tion, it was necessary to adapt the existing simulator ar-
chitecture to allow agents to communicate with one an-
other. Agents communicate directly with each other and not
through intermediary artifacts. This was implemented using
an extended version of the approach adopted by Hutchins
and Hazlehurst. The last hidden layer of each agent’s neural
network functions as a verbal input/output layer (figure 2).
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Figure 2:Agent Communication Architecture

At end of each generation, a percentage of the popula-
tion’s fittest networks are selected and are allowed to be-
come teachers for the next generation. The teaching process
takes place as follows: a teacher is stochastically assigned
n pupils from the population wheren = Npop

Nteachers
, where

Npop is the population size andNteachers is the number of
teachers. Each pupil follows the teacher in its environment
and observes the teacher’s verbal output as it interacts with
its environment. Verbal output is produces through the ver-
bal I/O layer of the teacher’s neural network as a result of
stimulus received at the input layer. A teaching cycle occurs
when the pupil attempts to emulate its teacher’s verbal out-
put, using its own verbal apparatus, via back-propagation.
Once the number of required teaching cycles is completed,
the teacher networks die and new teachers are selected from
the new generation.

Unlike previous implementations, the number of verbal
input/output nodes is not fixed and is allowed to evolve with

the population, making the system more adaptable to poten-
tial changes in environment. In addition, this method does
not make any assumptions as to the number of verbal nodes
(and thus the complexity of the emerging lexicon) that is
required to effectively communicate.

4 Experimental Setup

The following set of experiments each employs two popu-
lations. One population is allowed to evolve through popu-
lation learning (by genetic algorithm), while the other em-
ploys both population and cultural learning.

Cultural learning is implemented based on a scheme de-
veloped by Hutchins and Hazlehurst [10] and further ex-
plored by Denaro [6] where the last hidden layer (or in
Denaro’s case, the output layer) of a neural network func-
tions as a verbal input/output layer. At the end of each gen-
eration, a percentage of the best individuals in the popu-
lation is selected to instruct the next. Pupil networks ob-
serve teacher networks as they interact with their environ-
ment and at each stimuli, teacher networks produce an ut-
terance through their verbal I/O layer. The pupil responds to
the utterance with its own, which is then corrected by back-
propagation to approximate the teacher’s. After the required
number of these interactions (teaching cycles) have been
completed, the teachers are removed from the population
and the pupils continue to interact with their environment.

The problem domain for this set of experiments is the
5-bit parity problem which, while relatively simple in its
structure, represents a reasonably complex classification
problem[8]. Each network is exposed to bit patterns and
must determine whether the pattern represents an odd or
even number. Fitness is assigned according to the mean
square error of a network.

The change in environment is implemented by reversing
the food and poison representations such that the bit pat-
tern representing food will represents poison and vice-versa.
Only one environmental change is allowed to occur in each
experiment.

Each experiment consists of a population of 50 neural
networks evolving for 250 generations with crossover and
mutation rates set at 0.6 and 0.02 respectively. The envi-
ronmental change takes place at generation 125. The pop-
ulation employing cultural learning takes the fittest 10% of
each generation as teachers which interact with pupils for
five teaching cycles. An additional parameter, cultural mu-
tation, adds noise to each interaction with probability 0.02.
The results presented are averaged from 20 independent
runs.

5 Experiment Results

The experimental results are divided into two sections. The
first examines the relative performance of cultural learning
and population learning through analysis of the error val-
ues for each population. The second section is concerned
with genotypic and phenotypic diversity measures for each
population.



5.1 Error

Each population’s fitness is determined by its error value,
where lower error is rewarded. Figure 3 shows the average
error value for both populations over the experiment run.
While both populations are equivalent up to generation 100,
the population employing cultural learning begins to show
improvement prior to the environment change.

At generation 125, both population errors increase dra-
matically (as could be expected). However, the cultural
learning population’s error value is significantly lower and
its subsequent error reduction for the remainder of the
experiment shows marked improvement over population
learning alone.

3.6

3.8

4

4.2

4.4

4.6

4.8

5

0 50 100 150 200 250

E
rr

or

Generations

Teaching
No Teaching

Figure 3:Error Values

The improvement delay experienced by the cultural
learning population in the initial generations of the exper-
iment can be explained by the fact that time is required to
evolve and isolate potentially useful teacher individuals in
the population. At the start of the experiment, such indi-
viduals are rare, and therefore cultural learning takes some
time to achieve its performance boost.

To understand how the error reduction is achieved, both
average maximum and minimum error values were obtained
for each population. Figure 4 shows the results for maxi-
mum error values. The maximum error values for the popu-
lation employing population learning are very unstable and
remain persistently high throughout the experiment.

By contrast, the maximum error values for the cultural
learning population are very stable and remain lower for the
entire experiment run. This is an intuitive result, given that
cultural learning will tend to reduce the population’s error
value as a whole through the teaching of poor individuals
by superior teachers.

Interestingly, the environment change is only graphically
apparent in the population employing cultural learning, sug-
gesting that even the poorest individuals are being affected
by the change. The worst individuals in the population em-
ploying population learning are equally inept in both envi-
ronments, while even the worst individuals in the cultural
learning population have learned some information about
their environment and therefore react to the change.
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Figure 4:Maximum Error Values

Given these results, it could be suggested that cul-
tural learning is achieving its higher average fitness simply
through marginal improvements of poor individuals and is
not infact guiding evolution by generating novel and supe-
rior individuals in the long run. This argument can be coun-
teracted by examining the results for the average minimum
error in both populations (Figure 5).
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Figure 5:Minimum Error Values

It is clear from the minimum error data that cultural
learning is producing better individual networks than popu-
lation learning alone (at least after generation 100). As these
results are averages of 20 runs, the possibility of a statisti-
cal anomaly to explain this phenomenon can be discounted.
Rather, the cultural learning process is guiding evolutionary
trends towards highly fit individuals.

5.2 Diversity

The results showing values for the first diversity measure,
genotypic diversity, are illustrated in Figure 6. The over-
all trend for both populations shows an initial high value of
genetic diversity and a subsequent drop. This is representa-
tive of an initial exploratory phase followed by convergence.
However, there is a marked difference between each popu-



lation. While the population employing population learn-
ing alone has a relatively short exploratory period and tends
to converge very quickly, the cultural learning population
spreads out is exploratory phase and converges around 50
generations later. Both populations have a roughly equiva-
lent level of genetic diversity by the second half of the ex-
periment.
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Figure 6:Genotypic Diversity

It is clear that cultural learning is not only affecting fit-
ness levels, but that it also has a direct effect on the level of
genetic diversity in the population. By maintaining a high
level of diversity, the population contains quite disparate in-
dividuals, which are brought to some level of homogeneity
by the cultural learning process. It can be speculated that by
maintaining a high number of effectively redundant genes in
each genome, the population is better suited to environment
change.

Early convergence makes a population rigid in the face
of changes. Cultural learning not only smoothes the change
process, but also prepares the population against future en-
vironmental changes by including a high number of poten-
tially useful genes in the gene pool. It is interesting to note
that the change in environment is not apparent in the geno-
typic diversity results. Both populations have effectively
converged by the time the environment change occurs and
without external influence, it is clear that genotypic diver-
sity cannot be refreshed through such changes.

Figure 7 shows results for phenotypic diversity for both
populations over the course of the experiment. While both
populations maintain a consistently high level of diversity,
it is clear that the population employing cultural learning
is producing more phenotypically diverse individuals. The
environmental change is more significant in this diversity
measure as can be seen by the falls in diversity levels in
both population occurring at generation 125.

This drop is significantly less pronounced in the popula-
tion employing cultural learning. Even after an environment
change, there exist some able individuals which are capable
of instructing the remainder of the populations, resulting in
a less dramatic effect. The drop in diversity in both popula-
tions is interesting in that it shows that once the environment
change occurs, each individual in the population performs
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Figure 7:Phenotypic Diversity

on average in a very similar manner.
The fact that phenotypic diversity is so high in the popu-

lation employing cultural learning is initially puzzling. One
would expect intuitively that since a small minority of indi-
viduals are training each generation, the population would
tend to become phenotypically similar and therefore that
phenotypic diversity would be low. There are two factors
which influence phenotypic diversity in a way which ex-
plains these results.

The first is that the teaching process does not result in
clone pupils, rather each pupil is a rough approximation of
the teacher’s outputs. Furthermore, because each an indi-
vidual’s verbal input/output layer is a hidden layer and not
its output layer, pupils do not approximate output values.
Certainly, the effect on the hidden layer teaching has an ef-
fect on the output of the network (as exemplified by cultural
learning’s superior performance with regard to error), but it
may produce rather different outputs from that of the teacher
and indeed that of other individuals.

A second factor is genotypic diversity in both popula-
tions. The slow phenotypic diversity decline prior to the
environmental change and the accelerated decline thereafter
exhibited by the cultural learning population somewhat mir-
rors the corresponding convergence of genotypic diversity.
Infact, by the end of the experiment, the phenotypic diver-
sity of both populations is very similar. High genotypic di-
versity produces individuals which are also highly pheno-
typically different. Reducing genotypic diversity over time
has a small but evident effect on the phenotypic diversity of
the cultural learning population.

6 Conclusions

The results presented in this paper suggest some reasons
as to why the addition of cultural learning often boosts a
population’s performance. In particular, the results high-
light the ability of cultural learning to adapt to a dramatic
change in environment. In addition, measures of genotypic
and phenotypic diversity have been presented which shed
some light on the evolutionary processes in each population.
Cultural learning produces populations which tend to have



a longer exploratory period, exhibited by increased geno-
typic diversity and later convergence. Furthermore, cultural
learning produces higher phenotypic diversity which is less
affected by changes in the environment. However, one must
acknowledge that while cultural learning provides a perfor-
mance enhancement, it is computationally expensive and
may not be suitable for all problem domains. Future work
will examine the performance of cultural learning and di-
versity with more complex problems and more extreme en-
vironment changes.
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