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Abstract— This paper examines the effect of the addition noise
to the cultural learning process of a population of agents. Exper-
iments are undertaken using an artificial life simulator capable
of simulating population learning (through genetic algorithms)
and lifetime learning (through the use of neural networks).To
simulate cultural learning, (the exchange of information through
non–genetic means) a group of highly fit agents is selected ateach
generation to function as teachers which are assigned a number
of pupils to instruct. Cultural exchanges occur through a hidden
layer of an agent’s neural network known as the verbal layer.
Through the use of back–propagation, a pupil agent imitatesthe
teacher’s behaviour and overall population fitness is increased.

We show that the addition of noise to cultural exchanges can
improve on the performance of cultural learning.

I. I NTRODUCTION

Culture is a means to exchange of information through non–
genetic means. Examples of such exchanges are language,
symbols and artifacts. Means of cultural exchanges between
organisms may be considered a subset of lifetime learning,
known as cultural learning. Generally, these exchanges allow
more experienced organisms to impart some domain knowl-
edge to less informed organisms.

Cultural exchanges in evolving populations can be simu-
lated in computer systems using neural networks and genetic
algorithms respectively. Genetic algorithms represent potential
problem solutions as genetic codes which are then evaluated
for fitness. Pairs of codes are selected in proportion to their
fitness and are combined together to produce offspring. These
offspring become part of the next generation and the process
is repeated. Genetic algorithms have been shown to be useful
in a vast variety of problem domains.

Neural networks are simplified mathematical models of
nervous systems, inspired by the neurons and synapses of
living creatures. Neural networks function by reading input
patterns, feeding these pattern values through a succession of
weighted synapses between neurons, and finally displaying
output values at specified output neurons. By comparing a
network’s output pattern to the desired output pattern for a
given input, a measure of error can be obtained. This error is
then used to alter the weighting value of synapses that connect
neurons in the network. One such algorithm for performing
this weighting adjustment is known as error back propagation.
Through a series of training iterations, the overall error of a
network can be reduced,thereby improving its performance.

The combination of genetic algorithms and neural networks
provides a framework for evolutionary experimentation in
popular domains such as language evolution, neural network
design optimization and games.

In previous work by Parisiet al. [1], it was suggested that
the addition of noise to a teacher’s verbal output could enhance
a population’s ability to retain culturally acquired information.
This paper presents experiments that replicate these results
and furthermore, attempt to ascertain the level of noise most
suitable for the successful imparting of information.

The remainder of the paper is organised as follows: Sec-
tion 2 gives some background information on related work.
Section 3 presents the artificial life simulator employed inthe
experiments. Each of its components are discussed, genetic
algorithm, neural network architecture and the encoding used
to generate valid genetic codes from neural network structures.
In Section 4, we detail the results and in Section 5, conclusions
are presented and future directions are outlined.

II. RELATED WORK

A number of learning models can be identified from ob-
servation in nature. These can roughly be classified into two
distinct groups: population and life-time learning. In this paper
we consider a subset of lifetime learning, cultural learning.

A. Population Learning

Population learning refers to the process whereby a popula-
tion of organisms evolves, or learns, by genetic means through
a Darwinian process of iterated selection and reproductionof
fit individuals. In this model, the learning process is strictly
confined to each organism’s genetic material: the organism
itself does not contribute to its survival through any learning
or adaptation process.

B. Lifetime Learning

By contrast, there exist species in nature that are capa-
ble of learning, or adapting to environmental changes and
novel situations at an individual level. Such learning, know
as life-time learning, still employs population learning to a
degree, but further enhances the population’s fitness through
its adaptability and resistance to change. Another phenomenon
related to life-time learning, first reported by Baldwin [2],



occurs when certain behaviour first evolved through life-
time learning becomes imprinted onto an individual’s genetic
material through the evolutionary processes of crossover and
mutation. This individual is born with an innate knowledge of
such behaviour and, unlike the rest of the populations, does
not require time to acquire it through life-time learning. As
a result, the individual’s fitness will generally be higher than
that of the population and the genetic mutation should become
more widespread as the individual is repeatedly selected for
reproduction.

Research has shown that the addition of life-time learning
to a population of agents is capable of achieving much higher
levels of population fitness than population learning alone[3],
[4]. Furthermore, population learning alone is not well suited
to changing environments [5].

1) Cultural Learning: Culture can be succinctly described
as a process of information transfer within a population that
occurs without the use of genetic material. Culture can take
many forms such as language, signals or artifactual materials.
Such information exchange occurs during the lifetime of indi-
viduals in a population and can greatly enhance the behaviour
of such species. Because these exchanges occur during an
individual’s lifetime, cultural learning can be considered a
subset of lifetime learning.

An approach known as synthetic ethology [6], [7] argues
that the study of language is too difficult to perform in
real world situations and that more meaningful results could
be produced by modelling organisms and their environment
in an artificial manner. Artificial intelligence systems can
create tightly controlled environments where the behaviour of
artificial organisms can be readily observed and modified.

In particular, experiments conducted by Hutchins and Ha-
zlehurst [8] simulate cultural evolution through the use ofa
hidden layer within an individual neural network in the pop-
ulation. This in effect, simulates the presence of a Language
Acquisition Device (LAD), the physiological component of
the brain necessary for language development, the existence of
which was first proposed by Chomsky [9]. The hidden layer
acts as a verbal input/output layer and performs the task of
feature extraction used to distinguish different physicalinputs.
It is responsible for both the perception and production of
signals for the agent.

A number of approaches were considered for the implemen-
tation of cultural learning including fixed lexicons [10], [11],
indexed memory [12], cultural artifacts [13], [14] and signal–
situation tables [6]. The approach chosen was the increasingly
popular teacher/pupil scenario [15], [1], [11] where a number
of highly fit agents are selected from the population to act
as teachers for the next generation of agents, labelled pupils.
Pupils learn from teachers by observing the teacher’s verbal
output and attempting to mimic it using their own verbal
apparatus. As a result of these interactions, a lexicon of
symbols evolves to describe situations within the population’s
environment.

III. E XPERIMENT SETUP

The experiments outlined in the next sections are designed
to simulate an environment where agents may encounter food
or poison bit patterns. Agents that correctly identify these
patterns are awarded higher levels of fitness than agents who
mistake food for poison.

For this set of experiments, food and poison bit patterns
are 5-bit patterns representing the 5-bit parity problem, where
food is assigned the value 1 and poison the value 0. The next
section outlines the artificial life simulator that is employed in
these experiments.

A. Simulator

The architecture of the simulator is based on a hierarchical
model (figure 1). Data propagates from the simulator’s inter-
face down to the simulator’s lowest level. The neural network
and genetic algorithm layers generate results which are then
fed back up to the simulator’s highest level.

Teaching

Testing

Command Interpreter

Neural Network

Encoding Decoding

Genetic Algorithm Fitness Evaluation

Fig. 1. Simulator Architecture

B. Command Interpreter Layer

The command interpreter is used to receive input from
users in order to set all variables used by the simulator.
The interpreter supports the use of scripts, allowing usersto
store parameter information for any number of experiments.
A parsing algorithm is used to break down a user’s commands
and to pass appropriate instructions to the relevant components
of the simulator.

C. Genetic Algorithm Layer

The genetic algorithm layers is responsible for the creation
of successive generations of neural networks. The layer is
responsible for the simulation of population learning within
the simulator. The layer accepts data from the encoding
layer as a genetic algorithm data structure. This structureis
then manipulated to generate the next generation using the
selection, crossover and mutation operators.



1) Selection:The selection process examines each individ-
ual in the population and must determine which individuals to
place into the intermediate population. The simulator genetic
algorithm layer uses the network’s error and accuracy as a
fitness measure to make this evaluation.

Once the fitness value is computed for each individual
in the population, linear based fitness ranking is used to
normalize fitness values evenly over the entire population
producing fitness values in the range [0.0,0.5]. This is doneto
overcome the potential for stagnation across the population
gene pool. Traditional proportional fitness assignment may
produce a population with very similar fitness values, thereby
deteriorating the selection process and possibly resulting in a
loss of diversity stemming from a small number of individuals
being allowed to reproduce many times. Ranking introduces a
uniform scaling across the population’s fitness so that fitness
values are evenly spread and making the selection process
more successful. In addition, fitness ranking provides a simple
means of controlling selective pressure, the probability that the
best individual is selected compared to the average probability
of selection of all individuals [16].

The total number of individual networks in the population
Nind is sorted such that each individual occupies a ranking
positionpos wherepos=1 represents the least fit individual and
pos=Nind the most fit individual. For selective pressureSP
in [1.0,2.0], a network’s fitness valueFitnessnetis calculated
as:

Fitnessnet = 2 − SP + 2(SP − 1)(pos − 1)/(Nind − 1)

Roulette wheel selection is then applied to the population to
select individuals for the intermediate population. The number
of times that an individual may be copied to the intermediate
population is a parameter which can be set using the command
interpreter.

2) Crossover:As a result of the chosen encoding scheme,
crossover may not operate at the bit level as this could result in
the generation of invalid gene codes. Therefore, the crossover
points are restricted to specific intervals — only whole node
or link values may be crossed over. Two–point crossover is
employed in this implementation.

3) Mutation: The mutation operator introduces additional
noise into the genetic algorithm process thereby allowing
potentially useful and unexplored regions of problem spaceto
be probed. The mutation operator usually functions by making
alterations on the gene code itself, most typically by altering
specific values randomly selected from the entire gene code.
In this implementation, weight mutation is employed. The
operator takes a weight value and modifies it according to
a random percentage in the range [-200%,200%].

D. Encoding and Decoding Schemes

Before the encoding and decoding layers can perform their
respective tasks, it is necessary to arrive at a suitable encoding
scheme. Many schemes were considered in preparation of
these experiments, prioritising flexibility, scalability, difficulty
and efficiency. These included Connectionist Encoding[17],

Node Based Encoding[18], Graph Based Encoding[19], Layer
Based Encoding[20], Marker Based Encoding[21], Matrix
Re–writing[22], [23], Cellular Encoding[24], Weight–based
encoding[25], [26] and Architecture encoding[27].

The scheme chosen is based on Marker Based Encoding
which allows any number of nodes and interconnecting links
for each network giving a large number of possible neural
network permutations.

        Start Marker     Node Label    Threshold    Link to Node    Link Weight    Link to Node    Link Weight    End Marker

SM                        5                     0.8              4      0.83    3                      -0.51                 EM... ...

Fig. 2. Marker Based Encoding

Marker based encoding represents neural network elements
(nodes and links) in a binary string. Each element is separated
by a marker to allow the decoding mechanism to distinguish
between the different types of element and therefore deduce
interconnections[22], [23].

In this implementation, a marker is given for every node in
a network. Following the node marker, the node’s details are
stored in sequential order on the bit string. This includes the
node’s label and its threshold value. Immediately following
the node’s details, is another marker which indicates the
start of one or more node–weight pairs. Each of these pairs
indicates a back connection from the node to other nodes in
the network along with the connection’s weight value. Once
the last connection has been encoded, the scheme places an
end marker to indicate the end of the node’s encoding (figure
2).

The scheme has several advantages over others:

- Nodes can be encoded in any particular order, as their role
within the network is determined by their interconnecting
links.

- The network structures may grow without restriction—
any number of nodes can be encoded along with their
interconnections.

- Links between nodes can cross layer boundaries. For
instance, a node in the input layer may link directly to
a node in the output layer, even if there are many layers
between the two.

- The system encodes individual weighting values as real
numbers, which eliminates the ‘flattening’ of the learned
weighting values which can occur when real number
values are forced into fixed bit–size number values.

E. Encoding and Decoding Layers

To perform genetic algorithm tasks, the neural network
structures must be converted into gene codes on which the
genetic algorithm will perform its operations. Conversely, once
the genetic algorithm has performed its tasks, the genetic code
structure must be converted back to a neural network architec-
ture. The encoding and decoding layers must therefore accept
both neural network data structures and genetic algorithm data
structures to function correctly. The encoding and decoding
layers follow the scheme outlined in Section 3.4.



F. Neural Network Layer

The neural network layer is responsible for all functions
carried out by the neural networks in the simulator’s popula-
tion. The neural network layer accepts a population of neural
network data structures and performs a number of functions.

G. Simulating Cultural Evolution

In order to perform experiments related to cultural evolution,
it was necessary to adapt the existing simulator architecture
developed by Curran and O’Riordan [3] to allow agents to
communicate with one another. This was implemented using
an extended version of the approach adopted by Hutchins
and Hazlehurst. The last hidden layer of each agent’s neural
network functions as a verbal input/output layer (figure 3).

Input Layer

Output Layer

Verbal I/O Layer

. . .

. . .

Verbal I/O Layer

Agent 1

Agent 2

Fig. 3. Agent Communication Architecture

At end of each generation, a percentage of the popula-
tion’s fittest networks are selected and are allowed to become
teachers for the next generation. The teaching process takes
place as follows: a teacher is stochastically assignedn pupils
from the population wheren =

Npop

Nteachers
, whereNpop is the

population size andNteachers is the number of teachers. Each
pupil follows the teacher in its environment and observes the
teacher’s verbal output as it encounters what it believes tobe
food or poison bit patterns. The pupil then attempts to emulate
its teacher’s verbal output using back-propagation. Once the
teaching process has been completed, the teacher networks die
and new teachers are selected from the new generation.

Unlike previous implementations, the number of verbal
input/output nodes is not fixed and is allowed to evolve with
the population, making the system more adaptable to potential
changes in environment. In addition, this method does not
make any assumptions as to the number of verbal nodes (and
thus the complexity of the emerging lexicon) that is required
to effectively communicate.

IV. EXPERIMENTS

The purpose of this set of experiments is to identify the
effect of noise on the performance of cultural learning. Noise
is added to a teacher’s output by a random value in the range
[-0.5,0.5]. The probability of a cultural transmission being di-
stored by noise is varied from 0.0 to 1.0. Other parameters for
the cultural learning setting are chosen as follows: the teacher
ratio, that is the percentage of the population that is chosen
as teachers, is set at 0.1. The number of teaching cycles, the
exposure each pupil has to the teachings of a particular teacher
is set at 5 cycles. These parameters where chosen following a
series of preliminary experiments. The crossover and mutation
rates were set at 0.6 and 0.02 respectively. These values were
determined empirically to give the best results. The results
presented below are averaged from twenty experiment runs
over 250 generations.
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Fig. 4. Verbal Output at Generation 1
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Fig. 5. Verbal Output at Generation 125
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Fig. 6. Verbal Output at Generation 250

Figures 4 to 6 show the progression of the population’s
lexicon during one of the experiment runs for one of the 5–
bit parity states. The figures show that a relatively random
collection of verbal output evolves over time to an accepted
lexical standard. By generation 250, most of the agents are
using the same verbal outputs to describe their environment.
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The results shown in figure 7 suggest that when cultural
mutation is set atany of the values attempted, the population
fitness improves. Even very high mutation (i.e. where all
cultural exchanges are distorted by a value in the range
[-0.5,0.5]) produces better results than no mutation at all.
However, smaller amounts of cultural mutation produce higher
levels of fitness. For this problem domain, it is clear from
the results that the optimum level of cultural mutation is
approximately 0.1.

Evidently, the diversity provided by the distortion of teacher
output seems to give rise to better learning on the part of
the pupils. We speculate that since the teacher’s output is
never perfect, and is never perfectly perceived by its pupil,
it cannot be wholly relied upon. The addition of noise may
help the pupil determine its own response to stimulus, rather
than blindly copying the teacher’s. Thus, the addition of noise
adds an important element to the cultural learning process.

V. CONCLUSION

These experiments have shown that the addition of noise to
cultural learning exchanges within a population of agents can
greatly improve their overall fitness for this particular problem
set. While it would be tempting to generalise on the effect of
cultural mutation as a whole, it is clear that more analysis is
required. We have expanded on previous work by showing that
the optimum noise probability value can be ascertained for a
given problem domain. Further work will focus on the co–
evolution of the cultural mutation parameter to provide added
plasticity in changing environments.
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