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Abstract— This paper examines the effect of the addition noise
to the cultural learning process of a population of agents. kper-
iments are undertaken using an artificial life simulator capable
of simulating population learning (through genetic algorithms)
and lifetime learning (through the use of neural networks).To
simulate cultural learning, (the exchange of information tirough
non—genetic means) a group of highly fit agents is selected @ach
generation to function as teachers which are assigned a nureb
of pupils to instruct. Cultural exchanges occur through a hdden
layer of an agent’s neural network known as the verbal layer.
Through the use of back—propagation, a pupil agent imitateghe
teacher’s behaviour and overall population fitness is incrased.

We show that the addition of noise to cultural exchanges can
improve on the performance of cultural learning.

I. INTRODUCTION
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The combination of genetic algorithms and neural networks
provides a framework for evolutionary experimentation in
popular domains such as language evolution, neural network
design optimization and games.

In previous work by Pariset al. [1], it was suggested that
the addition of noise to a teacher’s verbal output could eoba
a population’s ability to retain culturally acquired infoation.

This paper presents experiments that replicate thesetsesul
and furthermore, attempt to ascertain the level of noisetmos
suitable for the successful imparting of information.

The remainder of the paper is organised as follows: Sec-
tion 2 gives some background information on related work.
Section 3 presents the artificial life simulator employedhia
experiments. Each of its components are discussed, genetic

Culture is a means to exchange of information through nomtgorithm, neural network architecture and the encodiregius
genetic means. Examples of such exchanges are languag@enerate valid genetic codes from neural network strastu
symbols and artifacts. Means of cultural exchanges betwe@rSection 4, we detail the results and in Section 5, conchssi
organisms may be considered a subset of lifetime learninge presented and future directions are outlined.

known as cultural learning. Generally, these exchangesvall
more experienced organisms to impart some domain knowl- .

edge to less informed organisms.

Cultural exchanges in evolving populations can be simg—
lated in computer systems using neural networks and genecH

algorithms respectively. Genetic algorithms represete gl

: . . e
problem solutions as genetic codes which are then evaluafed

RELATED WORK

A number of learning models can be identified from ob-
ervation in nature. These can roughly be classified into two
Stinct groups: population and life-time learning. Instipaper
consider a subset of lifetime learning, cultural leagnin

fpr fithess. Pairs of c_odes are selected in proportiqn tar thej Population Learning

fithess and are combined together to produce offspring.er'hes _ )

offspring become part of the next generation and the proces§©Pulation learning refers to the process whereby a popula-
is repeated. Genetic algorithms have been shown to be us&Rjp Of organisms evolves, or learns, by genetic means girou

in a vast variety of problem domains.

a Darwinian process of iterated selection and reproduaifon

Neural networks are simplified mathematical models dff individuals. In this model, the learning process is slyic
nervous systems, inspired by the neurons and synapses_c‘?ﬂf'ned to each organism’s genetic material: the organism
living creatures. Neural networks function by reading inpdtSelf does not contribute to its survival through any |eagn
patterns, feeding these pattern values through a sucoeskio©' a@daptation process.
weighted synapses between neurons, and finally displaying

output values at specified output neurons. By comparing

B,

N Lifetime Learning

network’s output pattern to the desired output pattern for aBy contrast, there exist species in nature that are capa-
given input, a measure of error can be obtained. This errorkike of learning, or adapting to environmental changes and
then used to alter the weighting value of synapses that @nneovel situations at an individual level. Such learning, \kno
neurons in the network. One such algorithm for performings life-time learning, still employs population learnirmy &

this weighting adjustment is known as error back propagatialegree, but further enhances the population’s fitness gfrou

Through a series of training iterations, the overall errbao

its adaptability and resistance to change. Another phenome

network can be reduced,thereby improving its performancerelated to life-time learning, first reported by Baldwin ,[2]



occurs when certain behaviour first evolved through life- I1l. EXPERIMENT SETUP

time learning becomes imprinted onto an individual’s ginet

material through the evolutionary processes of crossondr a 1he experiments outlined in the next sections are designed
mutation. This individual is born with an innate knowledde oto simulate an environment where agents may encounter food
such behaviour and, unlike the rest of the populations, dois poison bit patterns. Agents that correctly identify thes
not require time to acquire it through life-time learnings A patterns are awarded higher levels of fitness than agents who
a result, the individual’s fitness will generally be highean Mistake food for poison.

that of the population and the genetic mutation should becom For this set of experiments, food and poison bit patterns
more widespread as the individual is repeatedly selected fe 5-bit patterns representing the 5-bit parity probleimene
reproduction. food is assigned the value 1 and poison the value 0. The next
gction outlines the artificial life simulator that is emyd in

Research has shown that the addition of life-time learni .
ese experiments.

to a population of agents is capable of achieving much high
levels of population fitness than population learning alf#je
[4]. Furthermore, population learning alone is not welltedi A. Simulator

to changing environments [5]. The architecture of the simulator is based on a hierarchical

1) Cultural Learning: Culture can be succinctly describednodel (figure 1). Data propagates from the simulator’s inter
as a process of information transfer within a populatiort théace down to the simulator’s lowest level. The neural nekwor
occurs without the use of genetic material. Culture can taked genetic algorithm layers generate results which ane the
many forms such as language, signals or artifactual méterided back up to the simulator’s highest level.

Such information exchange occurs during the lifetime of-ind
viduals in a population and can greatly enhance the behaviou
of such species. Because these exchanges occur during an
individual's lifetime, cultural learning can be considéra
subset of lifetime learning.

Command Interpreter

Neural Network

An approach known as synthetic ethology [6], [7] argues
that the study of language is too difficult to perform in /\

real world situations and that more meaningful results @¢oul

be produced by modelling organisms and their environment Encoding Decoding
in an artificial manner. Artificial intelligence systems can
create tightly controlled environments where the behavadu \/

artificial organisms can be readily observed and modified. . -
Genetic Algorithm

In particular, experiments conducted by Hutchins and Ha-
zlehurst [8] simulate cultural evolution through the useaof
hidden layer within an individual neural network in the pop-
ulation. This in effect, simulates the presence of a Languag
Acquisition Device (LAD), the physiological component of
the brain necessary for language development, the exesteincB. Command Interpreter Layer
which was first pr_oposed by Chomsky [9]. The hidden layer The command interpreter is used to receive input from
acts as a verbal input/output layer and performs the taskd:g

feat tracti d 1o distinquish diff ¢ phvsicalit ers in order to set all variables used by the simulator.
eature extraction used to distinguish diterent pnysieputs. o interpreter supports the use of scripts, allowing users
It is responsible for both the perception and production

. Lore parameter information for any number of experiments.
signals for the agent. A parsing algorithm is used to break down a user's commands
A number of approaches were considered for the implemesnd to pass appropriate instructions to the relevant coesn

tation of cultural learning including fixed lexicons [10[LY], of the simulator.

indexed memory [12], cultural artifacts [13], [14] and sid
situation tables [6]. The approach chosen was the incrglgsin
popular teacher/pupil scenario [15], [1], [11] where a nemb
of highly fit agents are selected from the population to act The genetic algorithm layers is responsible for the creatio
as teachers for the next generation of agents, labelledspupdf successive generations of neural networks. The layer is
Pupils learn from teachers by observing the teacher’s Verlasponsible for the simulation of population learning with
output and attempting to mimic it using their own verbahe simulator. The layer accepts data from the encoding
apparatus. As a result of these interactions, a lexicon lafyer as a genetic algorithm data structure. This strudsire
symbols evolves to describe situations within the popoiési  then manipulated to generate the next generation using the
environment. selection, crossover and mutation operators.

Fig. 1. Simulator Architecture

C. Genetic Algorithm Layer



1) Selection:The selection process examines each indivitNode Based Encoding[18], Graph Based Encoding[19], Layer
ual in the population and must determine which individuals Based Encoding[20], Marker Based Encoding[21], Matrix
place into the intermediate population. The simulator ieneRe—writing[22], [23], Cellular Encoding[24], Weight—kes
algorithm layer uses the network’s error and accuracy aseacoding[25], [26] and Architecture encoding[27].
fitness measure to make this evaluation. The scheme chosen is based on Marker Based Encoding

Once the fitness value is computed for each individualhich allows any number of nodes and interconnecting links
in the population, linear based fitness ranking is used fior each network giving a large number of possible neural
normalize fithess values evenly over the entire populatioetwork permutations.
producing fithess values in the range [0.0,0.5]. This is done
Overcome the potentlal for Stagnatlon across the popmlann Start Marker Node Label Threshold Linkto Node Link Weight Link to Node Link Weight End Marker
gene pool. Traditional proportional fitness assignment md;[*" [ s Joos | « | os | 5 [ oo [ & [.]
produce a population with very similar fitness values, thgre
deteriorating the selection process and possibly reguitira

loss of diversity stemming from a small number of individual Marker based di N | network el ¢
being allowed to reproduce many times. Ranking introduces a arker based encoding represents neural network elements

uniform scaling across the population’s fithess so thatd$gne nodes and links) in a binary strmg. Each elgment |s.se'pare'1t
E el marker to allow the decoding mechanism to distinguish

Fig. 2. Marker Based Encoding

values are evenly spread and making the selection proc ¥ .
more successful. In addition, fithess ranking provides gkm . etween the_ different types of element and therefore deduce
means of controlling selective pressure, the probablisy the interconnections[22], [23].

best individual is selected compared to the average prityabi In this |mplemer1tat|on, a marker is given for e\{ery no_de n
of selection of all individuals [16]. a network. Following the node marker, the node’s details are

The total number of individual networks in the populatior?todrefj ir ;‘elquegti_al oLderrc])nldthe lbit stlring. '(Ij’_his Iincflulcltes_t
N;nq is sorted such that each individual occupies a ranki e's label and its threshold value. Immediately follogvin

positionpos wherepos=1 represents the least fit individual and"® node’s details, is another_ markgr which indicates the
pos=Ning the most fit individual. For selective pressusg> Start of one or more node-weight pairs. Each of these pairs
in [1.0,2.0], a network’s fitness valu@itness,is calculated indicates a back con_nectlon from th_e node _to other nodes in
as: the network along with the connection’s weight value. Once
the last connection has been encoded, the scheme places an

Fitnesspet =2 — SP +2(SP —1)(pos — 1)/ (Nina — 1) end marker to indicate the end of the node’s encoding (figure
2)

Roulette wheel selection is then applied to the population t
select individuals for the intermediate population. Thenber
of times that an individual may be copied to the intermediate ~
population is a parameter which can be set using the command
interpreter.

2) Crossover:As a result of the chosen encoding scheme, ~
crossover may not operate at the bit level as this couldtrgsul
the generation of invalid gene codes. Therefore, the cvesso
points are restricted to specific intervals — only whole node ~
or link values may be crossed over. Two—point crossover is
employed in this implementation.

3) Mutation: The mutation operator introduces additional
noise into the genetic algorithm process thereby allowing ~
potentially useful and unexplored regions of problem space
be probed. The mutation operator usually functions by ngakin
alterations on the gene code itself, most typically by aiter
specific values randomly selected from the entire gene co
In this implementation, weight mutation is employed. Th
operator takes a weight value and modifies it according toTo perform genetic algorithm tasks, the neural network

The scheme has several advantages over others:

Nodes can be encoded in any particular order, as their role
within the network is determined by their interconnecting
links.

The network structures may grow without restriction—
any number of nodes can be encoded along with their
interconnections.

Links between nodes can cross layer boundaries. For
instance, a node in the input layer may link directly to
a node in the output layer, even if there are many layers
between the two.

The system encodes individual weighting values as real
numbers, which eliminates the ‘flattening’ of the learned
weighting values which can occur when real number
values are forced into fixed bit—size number values.

%e.'Encoding and Decoding Layers

a random percentage in the range [-200%,200%)]. structures must be converted into gene codes on which the
. ] genetic algorithm will perform its operations. Converselyce
D. Encoding and Decoding Schemes the genetic algorithm has performed its tasks, the genetle c

Before the encoding and decoding layers can perform thetructure must be converted back to a neural network arzhite
respective tasks, it is necessary to arrive at a suitabledémg ture. The encoding and decoding layers must therefore ticcep
scheme. Many schemes were considered in preparationboth neural network data structures and genetic algorithta d
these experiments, prioritising flexibility, scalabilitjifficulty  structures to function correctly. The encoding and deapdin
and efficiency. These included Connectionist Encoding[17ayers follow the scheme outlined in Section 3.4.



F. Neural Network Layer IV. EXPERIMENTS

The neural network layer is responsible for all functions The purpose of this set of experiments is to identify the
carried out by the neural networks in the simulator’s popmgffect of noise on the’performance of cultural Iearmng.sﬁém
tion. The neural network layer accepts a population of deuf§ @dded to a teacher's output by a random value in the range

network data structures and performs a number of functionis0-2:0-5]. The probability of a cultural transmission igidi-
stored by noise is varied from 0.0 to 1.0. Other parameters fo

the cultural learning setting are chosen as follows: thehtea

G. Simulating Cultural Evolution ratio, that is the percentage of the population that is amose
. . as teachers, is set at 0.1. The number of teaching cycles, the
: In order to perform experiments Fe'f"‘ted t_o cultural evqlu,tl exposure each pupil has to the teachings of a particulanéeac
g Wals neO(I:ebssegy to ada%t gle;'ex(ljstlngsslmulr:\lfor arCh'teCtli's set at 5 cycles. These parameters where chosen following a

eveloped by Lurran an loraan [3] t_o allow agents _tgeries of preliminary experiments. The crossover and rnoumtat
communicate W|th_one another. This was implemented USINBtes were set at 0.6 and 0.02 respectively. These values wer
an extended version of the approach adopted by Hutch ermined empirically to give the best results. The result

and Hazlehur;t. The last hiddgn layer of each ag.ent’s neuﬁ?ésented below are averaged from twenty experiment runs
network functions as a verbal input/output layer (figure 3). over 250 generations

Agent 1 Verbal Output /1\ /k

Input Layer

Q QYOO

cooooo000
[Sicecencrttay

<

Agent 2 o

Fig. 3. Agent Communication Architecture

At end of each generation, a percentage of the popula- Fig. 5. Verbal Output at Generation 125
tion’s fittest networks are selected and are allowed to becom
teachers for the next generation. The teaching process take
place as follows: a teacher is stochastically assigneaipils
from the population where = NtN% where N, is the
population size an@®;...rers IS the number of teachers. Each
pupil follows the teacher in its environment and observes th
teacher’s verbal output as it encounters what it believdseto
food or poison bit patterns. The pupil then attempts to etaula
its teacher’s verbal output using back-propagation. Ohee t
teaching process has been completed, the teacher netwerks d
and new teachers are selected from the new generation. Fig. 6. Verbal Output at Generation 250

Unlike previous implementations, the number of verbal
input/output nodes is not fixed and is allowed to evolve with Figures 4 to 6 show the progression of the population’s
the population, making the system more adaptable to patentexicon during one of the experiment runs for one of the 5—
changes in environment. In addition, this method does noit parity states. The figures show that a relatively random
make any assumptions as to the number of verbal nodes (antlection of verbal output evolves over time to an accepted
thus the complexity of the emerging lexicon) that is reqaiirdexical standard. By generation 250, most of the agents are
to effectively communicate. using the same verbal outputs to describe their environment
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The results shown in figure 7 suggest that when cultural]
mutation is set aany of the values attempted, the population
fitness improves. Even very high mutation (i.e. where gli
cultural exchanges are distorted by a value in the range
[-0.5,0.5]) produces better results than no mutation at aft3!
However, smaller amounts of cultural mutation produce @ighj14
levels of fitness. For this problem domain, it is clear from
the results that the optimum level of cultural mutation is
approximately 0.1. [15]

Evidently, the diversity provided by the distortion of tbac
output seems to give rise to better learning on the part
the pupils. We speculate that since the teacher's output
never perfect, and is never perfectly perceived by its pupil7]
it cannot be wholly relied upon. The addition of noise may
help the pupil determine its own response to stimulus, rathe
than blindly copying the teacher’s. Thus, the addition aseo
adds an important element to the cultural learning process/8l

i

V. CONCLUSION [19]

These experiments have shown that the addition of noise to
cultural learning exchanges within a population of ageats c
greatly improve their overall fitness for this particulaoplem [20]
set. While it would be tempting to generalise on the effect of
cultural mutation as a whole, it is clear that more analysis i
required. We have expanded on previous work by showing t?%t]
the optimum noise probability value can be ascertained for a
given problem domain. Further work will focus on the co—
evolution of the cultural mutation parameter to provide exdld [22]
plasticity in changing environments. 23]
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