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Abstract. Cultural learning describes the process of information trans-
fer between individuals in a population through non–genetic means. Typ-
ically this is achieved through communication or the creation of artifacts
available to all members of a population. Cultural learning has been
simulated by combining genetic algorithms and neural networks using a
teacher/pupil scenario where highly fit individuals are selected as teach-
ers and instruct the next generation.
This paper explores the effect of a cultural learning approach to the
development of solutions for three test–case sequential decision tasks:
connect–four, tic–tac–toe and blackjack. Experiments are conducted with
populations employing population learning alone and populations com-
bining population and cultural learning.

1 Introduction

A number of learning models may be readily observed from nature and have been
the focus of much study in artificial intelligence research. Population learning (i.e.
learning which occurs at a population level through genetic material) is typically
simulated using genetic algorithms. Life-time learning (i.e. learning which takes
place during an organisms’s life time through reactions with its environment)
can be simulated in a variety of ways, typically employing neural networks or
reinforcement learning models.

A relatively new field of study in artificial intelligence is synthetic ethology.
The field is based on the premise that language and culture are too complex to
be readily analysed in nature and that insight can be gained by simulating its
emergence in populations of artificial organisms. While many studies have shown
that lexical, syntactical and grammatical structures may spontaneously emerge
from populations of artificial organisms, few discuss the impact such structures
have on the relative fitness of individuals and of the entire population.

The focus of this paper is to attempt to understand the effect of cultural learn-
ing on a population of artificial organisms attempting to find solutions to three
distinct sequential decision problems. The remainder of this paper is arranged
as follows. Section 2 introduces background research, including descriptions of
diversity measures and cultural learning techniques that have been employed for
this study. Section 3 describes the experimental setup. Section 4 presents the a
description of each experiment as well as their results and Section 5 provides a
conclusion.



2 Background research

2.1 Cultural Learning

Culture can be succinctly described as a process of information transfer within
a population that occurs without the use of genetic material. Culture can take
many forms such as language, signals or artifactual materials. Such information
exchange occurs during the lifetime of individuals in a population and can greatly
enhance the behaviour of such species. Because these exchanges occur during an
individual’s lifetime, cultural learning can be considered a subset of lifetime
learning.

An approach known as synthetic ethology [10, 18] argues that the study of
language is too difficult to perform in real world situations and that more mean-
ingful results could be produced by modelling organisms and their environment
in an artificial manner. Artificial intelligence systems can create tightly controlled
environments where the behaviour of artificial organisms can be readily observed
and modified. Using genetic algorithms, the evolutionary approach inspired by
Darwinian evolution, and the computing capacity of neural networks, artificial
intelligence researchers have been able to achieve very interesting results.

A number of approaches were considered for the implementation of cultural
learning including fixed lexicons [21, 4], indexed memory [17], cultural artifacts
[8, 3] and signal–situation tables [10]. The approach chosen was the teacher/
pupil scenario [2, 7, 4] where a number of highly fit agents are selected from the
population to act as teachers for the next generation of agents, labeled pupils.
Pupils learn from teachers by observing the teacher’s verbal output and attempt-
ing to mimic it using their own verbal apparatus. As a result of these interac-
tions, a lexicon of symbols evolves to describe situations within the population’s
environment.

2.2 Sequential Decision Tasks

Sequential decision tasks are a complex class of problem that require agents to
make iterative decisions at many steps throughout the task. Each decision has a
direct effect on the agent’s environment and in turn affect its subsequent deci-
sions. Our selection of a number of games was driven by two main factors: games
are good examples of sequential decision tasks and many artificial intelligence
implementations exist for ready comparison and analysis.

The games we chose as a test-bed for cultural learning are roughly grouped in
perceived order of difficulty, beginning with tic-tac-toe following with the game
of blackjack and concluding with the game of connect-four.

3 Experimental Setup

The following set of experiments each employs two populations. One population
is allowed to evolve through population learning (by genetic algorithm), while



the other employs both population and cultural learning. The experiments are
carried out using an artificial life simulator developed by Curran and O’Riordan
[6] capable of simulating population and cultural learning.

Cultural learning is implemented based on a scheme developed by Hutchins
and Hazlehurst [8] and further explored by Denaro [7] where the last hidden
layer (or in Denaro’s case, the output layer) of a neural network functions as
a verbal input/output layer. At the end of each generation, a percentage of
the best individuals in the population is selected to instruct the next. Pupil
networks observe teacher networks as they interact with their environment and
at each stimuli, teacher networks produce an utterance through their verbal I/O
layer. The pupil responds to the utterance with its own, which is then corrected
by back-propagation to approximate the teacher’s. After the required number
of these interactions (teaching cycles) have been completed, the teachers are
removed from the population and the pupils continue to interact with their
environment.

In previous work by Parisi et al.[7], it was suggested that the addition of
noise to a teacher’s verbal output could enhance a population’s ability to retain
culturally acquired information. This is parameter was implemented in the sim-
ulator and generates noise in the range [-0.5,0.5] to the teacher’s output when
instructing a pupil with probability n.

4 Experiments

4.1 Tic Tac Toe

Tic–tac–toe, or three in a row is a very simple two player game played on a 3x3
board. Each player is assigned either the X or O symbol and takes turns placing
one symbol onto the board at a time. Each player attempts to place three of
his/her pieces in a horizontal, vertical or diagonal line of three.

In order to evolve good players, it was decided that agents in the population
would all compete against a perfect player rather than compete against each
other. To avoid over-fitting, the perfect player’s first move is randomised to
provide game diversity. It was felt that populations of agents competing against
each other would be likely to converge only to local maxima due to the lack of
competitive pressure.

The presence of a perfect player in the population should not be construed as
an example of a solution set from which the population is modeled. The perfect
player is a minimax implementation and merely provides an incentive for the
population to improve. It does not provide a neural network implementation of
a perfect tic-tac-toe player.

Each agent’s neural network structure contains 18 input nodes, 2 for each
board position where 01 is X, 10 is O and 11 is an empty square. Nine output
nodes corresponding to each board position are used to indicate the agent’s
desired move. The node with the strongest response corresponding to a valid
move is taken as the agent’s choice.
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Fig. 1. Tic Tac Toe Experiment

Since the agents play against a perfect player, fitness is assigned according to
how long each agent is capable of avoiding a loss situation. An agent’s fitness is
therefore correlated with the number of moves that each game lasts, rewarding
agents capable of forcing the perfect player to as close to a draw as possible. The
fitness function produces values in the range [0,32], where 32 is the maximum
fitness (the situation where the agent draws all four games).

Populations of 100 agents were generated for these experiments and allowed
to evolve for 250 generations. Crossover was set at 0.6 and mutation at 0.02.
The cultural learning settings of teacher ratio and teaching cycles were set at
0.1 and 5 respectively. Cultural mutation was set at 0.05. These parameters were
determined empirically to provide the best performance.

Experimental Results Two experiments were undertaken: one using only pop-
ulation learning to evolve players, and the other using population and cultural
learning. Figure 1 shows the average fitness values for the two evolving popu-
lations. While both types of learning begin at similar levels of fitness, there is
strong evidence (p value < 0.0001, 95% C.I.) to suggest that agents employing
cultural evolution are performing better as the experiment progresses.

Population Average Fitness Standard Deviation

Population Learning 25.48 1.64
Cultural Learning 22.63 1.77

Discussion It is interesting to compare these results with those obtained by
Angeline and Pollack [1] who used a competitive fitness function to evolve popu-
lations of neural network tic–tac–toe players. The population of evolving players
was pitted against a number of ‘expert’ player strategies, including a perfect
player. If we examine their results in terms of a draws/losses ratio, we find
that their best evolved players (playing against a perfect player) obtain a ratio



of 0.2405. By contrast, the cultural learning approach presented in this paper
obtains an average of 0.72 with highs of 0.94 and lows of 0.625.

4.2 The Game of BlackJack

Blackjack or twenty–one begins with the dealer dealing two cards face–up to
each player and two to his/herself, with one card visible (the up–card) and the
other face down. Cards are valued by their face value (10 for all picture cards)
except for the ace which can be counted either as 11 or 1. The object of the game
is to obtain a higher score (the sum of all card values) than that of the dealer’s
without exceeding 21. Each player can draw additional cards until they either
stand or exceed 21 and go bust. Once all players have obtained their cards, the
dealer turns over the hidden card and draws or stands as appropriate. Should
the dealer’s hand bust, all players win.

The dealer is at considerable advantage because he/she only enters the game
once all players have fully completed their play. Thus, it is probable that some
players will have bust even before the dealer reveals the hidden card. In addition,
the fact that only one of the dealer’s cards is visible means that players must
make judgements based on incomplete information. As a rule, the dealer follows a
fixed strategy, typically standing on a score of 17 or more and drawing otherwise.

All aspects related to betting such as doubling down and splitting have been
removed from this implementation and only one deck is used in each game. This
is in order to facilitate comparison with previous work which employs a similar
approach.

Several attempts have been made to develop high performing blackjack strate-
gies with populations of neural networks using reinforcement learning tech-
niques[12, 13]. The nature of the game means that there is no perfect set of
neural network outputs from which to perform back–propagation. It is for this
reason that we wish to show that the introduction of cultural learning can gen-
erate superior strategies than reinforcement learning methods and provides the
learning framework required without knowledge of the perfect strategy.

In this implementation, each agent’s neural network is given information
about the card value currently held, as well as a flag indicating the presence of
an ace. In addition, each neural network is given the value of the dealer’s upcard.
Each experiment allows 100 agents to evolve over 500 generations. At each gen-
eration, agents play 100 games against a dealer strategy and an agent’s fitness
is determined by the percentage of wins obtained scaled to [0.0,1.0]. Crossover
was set at 0.6 and mutation at 0.02. The cultural learning settings of teacher
ratio and teaching cycles were set at 0.1 and 5 respectively. Cultural mutation
was also added with probability 0.05.

Experimental Results The graph in figure 2 shows that the addition of cul-
tural learning, allows the population to perform substantially better than pop-
ulation learning alone, achieving highs of over 0.45 (45% wins) versus 0.44 for
population learning. The evolved strategy outlined below was extracted from



the population by examining the neural network response to all possible card
values.

Population Percentage Wins Standard Deviation

Cultural Learning 43.0149 1.97
Population Learning 42.6455 2.24

if (an Ace is held)

{

if (dealer has a 6 or higher)

stand on 16

else

stand on 17

}

else

{

if (dealer has a 7 or higher)

stand on 17

else

stand on 13

}

This time there is strong evidence (p < 0.05, 95% C.I.) to suggest that
cultural learning agents are indeed statistically different than population learning
agents. It is clear from the strategy that the evolved agents are employing the new
dealer and ace information to the full extent and have identified a threshold value
for the dealer up–card. The strategy is tested in the next section to ascertain its
performance with respect to the bench–marked strategies.

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0 50 100 150 200 250 300 350 400 450 500

Population Learning
Population and Cultural Learning

Generations

F
it
n
e
s
s

Fig. 2. Blackjack Experiment

It is interesting that cultural learning only appears to provide improvement
in this last set of experiments. On examination of evolved strategies for both



populations in the previous two experiments, it is clear that both populations
have reached the optimum possible given the amount of information provided.
However, the addition of dealer information creates greater complexity which
population learning alone is incapable of tracking.

Strategy Testing In order to assess the performance of the evolved strategy, a
set of bench–marks must be obtained for comparison purposes. This was achieved
using a blackjack simulator consisting of a dealer, who employs the traditional
dealer strategy of standing on 17 or greater, and a single player whose strategy
can be set at the beginning of the simulation. The evolved strategy was compared
to a number of strategies, including an evolved strategy developed by Uribe and
Sanchez[13] and 1000 runs of 1000 games were performed for each strategy to
produce statistically significant results.

Strategy Percentage Wins Standard Deviation

Hoyle 43.70 1.587
Evolved Strategy 43.67 1.582

Dealer 41.52 1.576
Sanchez et al 38.43 1.505
Always Stand 38.00 1.531

Random 30.67 1.511

The results of the simulation show that the evolved strategy does not quite
reach the level of Hoyle’s strategy but is very close. On examination of the stan-
dard deviations, it is clear that the top two strategies are very similar, suggest-
ing that the population has evolved an optimum strategy given the information
available. It is likely that in order to out–perform Hoyle’s strategy it is necessary
to keep track of cards that have been played during a game, something which
would only become truly useful if the number of players was increased.

Discussion The results presented show that cultural learning provides a mod-
est improvement on population learning, provided that sufficient environmental
information is present. It is clear that the addition of dealer information to the
population significantly improves the performance of both population learning
and cultural learning.

While these improvements are small, it is worth remembering that the game
of blackjack is inherently very noisy and odds are very much stacked in favour
of the dealer. Consequently, any statistically significant improvement such as we
have shown, represents an achievement on the part of the evolutionary process.
Through the bench-marking process we have shown that the evolved strategy is
equivalent to the best human strategy which does not incorporate card-counting.

4.3 Connect Four

The game of connect–four is a two–player game played on a vertical board of 7x6
positions into which pieces are slotted in one of seven available slots. Each player



is given a number of coloured pieces (one colour per player) and must attempt
to create horizontal, vertical or diagonal piece–lines of length four. Players place
one piece per turn into one of the seven slots. The piece then falls onto a free
position in the chosen column, creating piles, or towers, of pieces. If a column is
full, the player must select an available slot.

Some research has been undertaken in the evolution of connect–four players
employing a library of existing games to train the neural networks by back–
propagation [15] as well as reinforcement learning methods [16].

While the game appears simple, a certain amount of tactical knowledge is
required to play proficiently. The most obvious approach is to scan the board for
existing lines of three and either finish them to create four–in–a–line, or if the
line is the opponent’s, block it. However, as is the case in many games, the best
approaches focus on forcing the opponent to contribute to the player’s victory,
requiring more complex strategies.

In order for a population of neural networks to play games of connect–four,
a method must be developed to encode both the board’s current position and
decode the network’s output into a valid move. Following a number of empirical
trials examining a number of techniques, the best approach, dubbed Multiple
Board Selection, was chosen for this set of experiments.

Multiple board selection, presents a neural network with all possible board
positions resulting from each of the moves available. At each move, the neural
network’s single output node records the network’s estimation of the board po-
sition’s worth. The move producing the best board position (according to the
neural network output value) is taken to be the agent’s preferred choice and is
chosen as the agent’s next move.

Experimental Results A population of 20 agents were allowed to evolve for
100 generations. At each generation, agents play in a tournament against all
other players. In addition, each agent plays a minimax player with three levels
of difficulty. In total, each agent plays 22 games of connect–four in its lifetime.
Agents are assigned fitness according to each game’s result: 3 points for a both
a win and a draw and 0 points for a loss. This gives a fitness range of [0,66].
Teachers play a full tournament while pupils observe, and at each move, the
teacher corrects the pupil’s perception through back–propagation.

Crossover was set at 0.6 and mutation at 0.02. The cultural learning settings
of teacher ratio and teaching cycles were set at 0.1 and 5 respectively. Cultural
mutation was also added with probability 0.05. The results in Fig. 3 show that
the addition of cultural learning provides the best performance and that the
fitness levels show an upward trend at the end of the experiment, suggesting
that the population is capable of further improvement.

Discussion There is strong evidence (p value < 0.05, 95% C.I. ) to suggest that
the increase in performance brought by the addition of cultural learning to the
population is statistically significant . It is therefore possible to conclude from
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Fig. 3. Connect Four Experiment

this set of results that cultural learning improves the performance of agents in
the connect–four environment.

5 Conclusion

This paper presents a set of test–cases which highlight the potential of cultural
learning in sequential decision problems. The results indicate that cultural learn-
ing provides improved performance over population learning in each test–case.
We have shown that unlike traditional life–time learning techniques of neural
network optimisation such as gradient descent, cultural learning does not re-
quire explicit solution information.

Cultural learning gives populations the opportunity to sample acquired in-
formation within the population itself. This allows weaker members of the pop-
ulation to gain access to environmental information which would otherwise be
impossible to attain without incurring possible fitness losses. In addition, ex-
periments such as these provide a possible explanation of complex behaviour in
nature: since no perfect solution is possible for a given environmental situation,
organisms are not capable of receiving direct error feedback in the manner of syn-
thesised life–time learning simulations. Instead, they must either rely on purely
genetic information, or develop a mechanism for imparting useful knowledge to
the next generation.

Future work will concentrate on more complex sequential decision problems
and examine the effect of dynamic environments on populations employing cul-
tural learning.
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