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Abstract. Population learning can be described as the iterative Darwinian process
of fitness–based selection and genetic transfer of information leading to populations
of higher fitness. Life–time learning describes the process of learning undertaken
by individuals in a population during their lifetime. These two learning models are
often simulated using genetic algorithms and neural networks, respectively, and can
be used to evolve efficient neural networks for a variety of tasks.

Cultural learning describes the process of information transfer between individ-
uals in a population through non–genetic means. Typically this is achieved through
communication or the creation of artifacts available to all members of a population.
Cultural learning has been simulated by combining genetic algorithms and neural
networks using a teacher/pupil scenario where highly fit individuals are selected as
teachers and instruct the next generation.

This paper explores the effect of a cultural learning approach to the development
of solutions for three test–case sequential decision tasks: connect–four, tic–tac–toe
and blackjack. Our cultural learning model allows individuals to vertically impart
knowledge acquired during their lifetime. Experiments are conducted with popula-
tions employing population learning alone and populations combining population
and cultural learning.

Keywords: Cultural Learning, Neural Networks, Sequential Decision Tasks, Games,
Artificial Life

1. Introduction

Some research has been performed with regard to the combination of
both population and life–time learning approaches(Nolfi and Parisi,
1995; Floreano and Mondada, 1989; S. Nolfi, 1994; Sasaki and Tokoro,
1997; Pereira and Costa, 2001; Watson and Wiles, 2002; Curran and
O’Riordan, 2003b; Curran and O’Riordan, 2003a), thus combining the
global search power of the underlying genetic algorithm and the finer
local search capabilities of gradient descent techniques. Empirically, the
combined approach proves to be successful, as the populations tend to
converge faster towards a global optimum.

Cultural learning is an alternative model which combines popula-
tion learning with a modified version of life–time learning that allows
populations to pass on knowledge to the next generation through non–
genetic means through a process of communication or artifact creation,
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often achieved through imitation. Much research has been conducted
in the field of imitation, particularly with respect to robotics and sym-
bol grounding in animals and artifacts(Billard and Hayes, 1997; Bil-
lard and Dautenhahn, 1999; Dautenhahn and Nehaniv, 2002; Hayes
and Demiris, 1994; Demiris and Hayes, 1996) and a number of mod-
els have been developed to examine the interaction of culture and
evolution(Cavalli-Sforza, 1981; Cavalli-Sforza, 1982; Boyd and Rich-
erson, 1985).

In addition, the simulation of culture in populations of artificial
organisms has been the focus of much research(Yanco and Stein, 1993;
De Jong, 1999; Batali, 1998; Denaro and Parisi, 1996a; Spector and
Luke, 1996; Oliphant and Batali, 1997; Kirby and Hurford, 1997a;
Saunders and Pollack, 1994; Kirby and Hurford, 1997b; Best, 1999;
de Boer and Vogt, 1999; Cangelosi, 1999; Brighton and Kirby, 2001;
Borenstein and Ruppin, 2003).

One method of simulating cultural learning is the teacher/pupil ap-
proach(Billard and Hayes, 1997; Denaro and Parisi, 1996a; Cangelosi
and Parisi, 1996). Highly fit individuals from the population (teach-
ers) are allowed to instruct the next generation (pupils). In this way,
important information gained through the life–time of the previous
generation is not lost completely and the fitness of the entire population
can be improved.

In this paper, we select three sequential decision bench–mark prob-
lems (tic–tac–toe, blackjack and connect–four) to examine the effect of
cultural learning in populations of neural networks. While previous
work has attempted to evolve game–playing agents using a variety
of games(Moriarty and Miikkulainen, 1995; Weaver and Bossomaier,
1996; Chellapilla and Fogel, 1999; Richards et al., 1997), none have
explicitly employed game–playing as a test–bed for cultural learning
experiments.

The aim of the work is to determine whether cultural learning is
capable of enhancing the performance of the population in a similar
manner to life–time learning. In particular, we are interested in observ-
ing the effect of cultural learning on the innate fitness of individuals
within the population.

In this sense, this work is similar to recent work by Borenstein &
Ruppin who explored the effect of cultural learning on the innate fitness
of populations for a variety of problem solving tasks(Borenstein and
Ruppin, 2003). However, while their work allowed individuals to impart
only innate knowledge, our framework allows individuals to transmit
information acquired culturally.

A series of experiments were conducted using populations employing
population–learning alone and populations employing both population
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and cultural learning. While the effects of cultural learning have been
examined before, the results presented diverge from previous work and
shed more light on the subject.

The remainder of this paper is arranged as follows: Section 2 sum-
marises related research and background material. Section 3 presents
the artificial life simulator employed to conduct the experiments. Sec-
tion 4 describes the experiments carried out: tic–tac–toe (Section 4.1),
blackjack (Section 4.2) and connect–four (Section 4.3). Section 5 pro-
vides a discussion of these experiments and Section 6 presents conclu-
sions.

2. Related work

The following section outlines some background material including learn-
ing models and sequential decision tasks.

2.1. Learning Models

A number of learning models can be identified from observation in
nature. These can roughly be classified into population, life–time and
cultural learning.

2.1.1. Population Learning

Population learning refers to the process whereby a population of or-
ganisms evolves, or learns, by genetic means through a Darwinian
process of iterated selection and reproduction of fit individuals. In
this model, the learning process is strictly confined to each organisms
genetic material: the organism itself does not contribute to its survival
through any learning or adaptation process.

2.1.2. Life–time Learning

There exist species in nature that are capable of learning, or adapting to
environmental changes and novel situations at an individual level. Such
learning, known as life–time learning is often coupled with population–
based learning, further enhancing the populations fitness through its
adaptability and resistance to change.

Another phenomenon related to life–time learning, first reported
by Baldwin(Baldwin, 1896), occurs when certain behaviour discov-
ered through life–time learning becomes imprinted onto an individuals
genetic material through the evolutionary processes of crossover and
mutation. To quote Hinton and Nowlan whose model ((Hinton and
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Nowlan, 1987)) was the first to demonstrate this effect through sim-
ulation, ”learning can provide an easy evolutionary path towards co–
adapted alleles in environments that have no good evolutionary path
for non–learning organisms”.

Subsequent work has further explored the interactions between evo-
lution and learning and shown that the addition of individual lifetime
learning can improve a population’s fitness(Nolfi and Parisi, 1995; Flo-
reano and Mondada, 1989; S. Nolfi, 1994; Sasaki and Tokoro, 1997;
Pereira and Costa, 2001; Watson and Wiles, 2002; Curran and O’Riordan,
2003b; Curran and O’Riordan, 2003a).

2.1.3. Cultural Learning

Culture can be succinctly described as a process of information transfer
within a population that occurs without the use of genetic material.
Culture can take many forms such as language, signals or artifactual
materials. Such information exchange occurs during the lifetime of indi-
viduals in a population and can greatly enhance the behaviour of such
species. Because these exchanges occur during an individuals lifetime,
cultural learning can be considered a subset of lifetime learning.

A number of approaches have been implemented to simulate cul-
tural learning including fixed lexicons(Yanco and Stein, 1993; Cangelosi
and Parisi, 1996), indexed memory(Spector, 1994), cultural artifacts
(Hutchins and Hazlehurst, 1991; Cangelosi, 1999) and signal–situation
tables(MacLennan and Burghardt, 1993).

The approach chosen was inspired by the teacher/pupil scenario
(Billard and Hayes, 1997; Denaro and Parisi, 1996b; Cangelosi and
Parisi, 1996) where a number of highly fit agents are selected from the
population to act as teachers for the next generation.

Experiments conducted by Hutchins and Hazlehurst(Hutchins and
Hazlehurst, 1995) simulate cultural evolution through the use of a hid-
den layer within an individual neural network in the population. The
networks respond to environmental features through their output units
but in addition, the outputs of the hidden layer are employed in teach-
ing. Pupils learn from teachers by observing the teacher’s hidden layer
output and attempting to mimic it through error back–propagation.

In previous work by Parisi et al.(Denaro and Parisi, 1996b), it was
suggested that the addition of noise to a teacher’s output could enhance
a population’s ability to retain culturally acquired information. Exper-
iment conducted in our previous work(Curran and O’Riordan, 2004)
confirmed that small levels of noise introduced to the communication
process improved agent performance.
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2.2. Sequential Decision Tasks

Sequential decision tasks are a complex class of problem that require
agents to make iterative decisions at many steps throughout the task.
Each decision has a direct effect on the agents environment and in turn
affects its subsequent decisions. Our selection of a number of games
was driven by two main factors: games are good examples of sequential
decision tasks and many artificial intelligence implementations exist for
ready comparison and analysis.

The games we chose as a test–bed for cultural learning are ordered
by perceived difficulty, beginning with tic–tac–toe followed by the game
of blackjack and concluding with the game of connect–four.

3. Simulator Architecture

The simulator implements population, lifetime and cultural learning.
Population learning is simulated using a genetic algorithm which gen-
erates successive generations using three operators: selection, crossover
and mutation. The algorithm employs an encoding scheme (described
in Section 3.4) to convert genetic codes to neural network structures.

Lifetime learning, the acquisition of knowledge occurring during the
lifetime of each individual, is simulated using neural networks. Each
agent in the population is equipped with a neural network responsible
for its perception and response to the environment. The neural network
structure is derived from an individual’s gene code at birth.

Cultural learning is implemented using a vertical cultural trans-
mission model (Boyd and Richerson, 1985; Belew, 1990) inspired by
Hutchins and Hazlehurst’s model. The approach employs the last hid-
den layer of each agent’s neural network as teaching apparatus. As
an agent encounters stimuli in its environment, it responds both be-
haviourially (emitting a signal through its output nodes) and ‘verbally’
(emitting a signal through its teaching nodes). Unlike Hutchins and
Hazlehurst’s model, the model employed for this work allows the num-
ber of teaching nodes to evolve along with the network structure. Thus,
no limitations are imposed on the communication complexity available
to the population.

At the end of each generation, a percentage of the population’s
fittest networks are selected and are allowed to become teachers for
the next generation. The teaching process takes place as follows: a
teacher is stochastically assigned n pupils from the population where

n =
Npop

Nteachers
, Npop being population size and Nteachers the number of

teachers.
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Figure 1. Agent Communication Architecture

Each pupil follows the teacher in its environment and observes the
teacher’s teaching output as it interacts with its environment. Both
teacher and pupil receive environmental stimuli and respond with teach-
ing signals. A teaching cycle occurs when the pupil’s output is corrected
to more closely resemble the teacher’s using error back–propagation.
Once the number of required teaching cycles is completed, the teachers
die and the pupils are released into their environment. At the end
of their lifetime, the fittest pupils are themselves selected to become
teachers for the next generation and can impart the knowledge acquired
through previous cultural exchanges. Thus, information is passed down
through successive generations.

3.1. Encoding Scheme

One of the most crucial aspects of the simulator is the translation of
genetic codes to neural network structures. Many encoding schemes
were considered in preparation of the simulator, prioritising flexibil-
ity, scalability, difficulty and efficiency. These included Connectionist
Encoding(Belew et al., 1992), Node Based Encoding (White, 1994),
Graph Based Encoding(Pujol and Poli, 1998), Layer Based Encod-
ing(Mandischer, 1993), Marker Based Encoding(Moriarty and Miikku-
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lainen, 1995), Matrix Re–writing(Kitano, 1990; Miller et al., 1989),
Cellular Encoding(Gruau, 1994), Weight–based encoding(Sutton, 1986;
Kolen and Pollack, 1991) and Architecture encoding (Koza and Rice,
1991).

The scheme chosen is inspired by Marker Based Encoding which
allows any number of nodes and interconnecting links for each network
giving a large number of possible neural network architecture permu-
tations. In addition, the scheme allows any number of hidden layers to
be evolved.

Marker based encoding represents neural network elements (nodes
and links) in a sequential list. Each element is separated by a marker
to allow the decoding mechanism to distinguish between the different
types of element and therefore deduce interconnections(Moriarty and
Miikkulainen, 1995).

        Start Marker     Node Label    Threshold    Link to Node    Link Weight    Link to Node    Link Weight    End Marker

SM                        5                     0.8              4      0.83    3                      -0.51                 EM... ...

Figure 2. Marker Based Encoding

In this implementation, a marker is given for every node in a net-
work. Following the node marker, the node’s details are stored in se-
quential order on the bit string. This includes the node’s label and its
threshold value. Immediately following the node’s details, is another
marker which indicates the start of one or more node–weight pairs.
Each of these pairs indicate a back connection from the node to other
nodes in the network along with the connection’s weight value. Once
the last connection has been encoded, the scheme places an end marker
to indicate the end of the node’s encoding.

A consequence of the encoding scheme is that the size of each agent’s
chromosome is directly related to the size of its neural network (the
number of nodes and links contained within it). In addition, there is no
requirement for genotypes to be the same size across the population.

Two parents possessing gene codes of different lengths will produce
two offspring whose gene code lengths are equal to that of their parents’.
Thus, if parent A has a large genome of length a and parent B has a
smaller genome of length b, one of their offspring will have a genome
of length a while the other will have one of length b.

Depending on the problem domain, smaller or larger neural network
architectures may be beneficial to the population, and the encoding
allows the evolutionary process the freedom to determine gene code
sizes by selecting appropriate parents.
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3.2. Crossover

As a result of the chosen encoding scheme, crossover may not operate at
the bit level as this could result in the generation of invalid gene codes.
Therefore, the crossover points are restricted to specific intervals – only
whole node or link values may be crossed over.

Two–point crossover is employed in this implementation. Once cross-
over points are selected, the gene portions are swapped. The connec-
tions within each portion remain intact, but it is necessary to adjust
the connections on either side of the portion to successfully integrate
it into the existing gene code. This is achieved by using node labels for
each node in the network. These labels are used to identify individual
nodes and to indicate the location of interconnections.

Once the portion is inserted, all interconnecting links within the
whole gene code are examined. If any links are now pointing to non–
existing nodes, they are modified to point to the nearest labeled node.
In effect, this link realignment is a form of link mutation, as the re–
attachment of crossed over network segments generated variation.

3.3. Mutation

The mutation operator introduces additional noise into the genetic
algorithm process thereby allowing potentially useful and unexplored
regions of problem space to be probed. The mutation operator usually
functions by making alterations on the gene code itself, most typi-
cally by altering specific values randomly selected from the entire gene
code. In this implementation, weight mutation is employed. The oper-
ator modifies a weight according to a random percentage value chosen
randomly from the range -200% to +200%.

4. Experiments

The games represent the environment in which the agents live. To be
successful, an agent must become sufficiently skilled to play each game
adequately.

4.1. Tic Tac Toe

Tic–tac–toe, or three in a row is a very simple two player game played
on a 3x3 board. Each player is assigned either the X or O symbol and
takes turns placing one symbol onto the board at a time. Each player
attempts to place three of his/her pieces in a horizontal, vertical or
diagonal line of three.
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Agents play games against a modified minimax player, whose first
move is randomized, allowing agents to play games of some variety.
Fitness is assigned according to the length of the game. In other words,
agents are rewarded for bringing the game to as close to a draw as
possible, as it is very unlikely that an agent will beat the modified
minimax player.
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Figure 3. Tic–Tac–Toe Population Fitness

Each agent’s neural network structure contains 18 input nodes, 2
for each board position where 01 is X, 10 is O and 11 is an empty
square. Nine output nodes corresponding to each board position are
used to indicate the agent’s desired move. The node with the strongest
response corresponding to a valid move is taken as the agent’s choice.

The simulator allows agents to evolve any number of hidden layers
each with an unrestricted number of nodes, giving maximum flexibility
to the evolutionary process. During the teaching process, a teacher
agent plays alongside the pupil. At each move, both the pupil and
teacher emit some teaching output in response to the current board po-
sition. At every teaching cycle, the pupils teaching output is corrected
with respect to the teachers using error back–propagation.

Populations of 100 agents were generated for these experiments and
allowed to evolve for 250 generations. Crossover was set at 0.6 and
mutation at 0.02. The cultural learning settings of teacher ratio and
teaching cycles were set at 0.1 and 5 respectively. Cultural mutation was
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set at 0.05. These parameters were determined empirically to provide
good performance.

4.1.1. Experimental Results

Figure 3 shows the average fitness of two populations throughout the
experiment run along with error bars showing fitness variance within
populations. It is clear from these results that the population addi-
tionally employing cultural learning out–performs the population em-
ploying population learning alone from the start of the experiment.
While the population learning population stabilises at around 0.825,
the population employing cultural learning achieves fitness values of
0.9 and above.

Interestingly, it appears that the population employing population
learning alone is less diverse in its fitness variance than that of the
population employing both cultural and population learning. Cultural
learning appears to be producing individuals with fitness ranges larger
than that of population learning alone. On average, even the worst
individual in the cultural learning population is performing better than
the best individual in the population learning population. Increased
diversity, particularly in early generations, is generally seen as a benefit
as the search space is more thoroughly examined, leading to superior
solutions.
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Figure 4. Tic–Tac–Toe Average, Maximum and Minimum Fitness for Non–Teaching
Population

journal.tex; 1/05/2006; 16:00; p.10



Sequential Task Problem Solving 11

Table I. Tic–Tac–Toe Average Fitness

Population Avg. Fitness Max Fitness Min Fitness S. D.

Pop. Learning 0.8029272 0.8308780 0.7086666 0.0004040

Cultural Learning 0.8732511 0.9337738 0.7692220 0.0007648

Figure 4 shows the average, maximum and minimum fitness val-
ues for the cultural learning population. Minimum and maximum val-
ues represent the average best and worst individual in the popula-
tion. While both maximum and minimum values appear to be stable
throughout the experiment run, the populations average fitness tends
towards the maximum fitness value.

By the second half of the experiment run, the populations average
fitness is virtually indistinguishable from the populations maximum
fitness value. Individuals that are incapable of improvement are quickly
culled from the population, and the cultural learning mechanism is
allowing even genetically mediocre individuals to achieve high fitness
levels.

Table I shows values for the average, average maximum, average
minimum and standard deviation for both populations. These figures
show that the population employing cultural learning is capable of
achieving higher averages, maximum, and minimum average values for
the whole interval. There is strong evidence (p value < 0.0001, 95%
confidence) to suggest that the difference between the two populations
is statistically significant.

In order to investigate further the effect of cultural learning on
the population, the populations fitness is measured before and after
the teaching cycles begin. Thus, the fitness levels of the population
are measured before and after teaching to determine an agents innate
fitness and its fitness acquired through cultural learning.

Figure 5 shows three fitness values: one for the population employing
population learning alone, one for the cultural learning population prior
to teaching and the last showing the cultural learning population after
teaching is applied.

The population employing cultural learning performs very differ-
ently before and after teaching is applied. Prior to teaching, the cultural
learning populations fitness is considerably lower than that of the pop-
ulation learning population. Indeed, the populations genotypic fitness
(the fitness measured before any cultural influence is applied) is consis-
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Figure 5. Tic–Tac–Toe Average Fitness for Population Before and After Teaching

tently low and appears to be stable throughout the experiment. This
result is discussed further later in the paper.

4.2. The Game of BlackJack

Blackjack or twenty–one begins with the dealer dealing two cards face–
up to each player and two to his/herself, with one card visible (the
up–card) and the other face down. Cards are valued by their face value
(10 for all picture cards) except for the ace which can be counted either
as 11 or 1. The object of the game is to obtain a higher score (the sum
of all card values) than that of the dealers without exceeding 21.

Each player can draw additional cards until they either stand or
exceed 21 and go bust. Once all players have obtained their cards, the
dealer turns over the hidden card and draws or stands as appropriate.
Should the dealers hand bust, all players win.

The dealer is at considerable advantage because he/she only enters
the game once all players have fully completed their play. Thus, it is
probable that some players will have bust even before the dealer reveals
the hidden card. In addition, the fact that only one of the dealers
cards is visible means that players must make judgements based on
incomplete information. As a rule, the dealer follows a fixed strategy,
typically standing on a score of 17 or more and drawing otherwise.
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All aspects related to betting such as doubling down and splitting
have been removed from this implementation in order to facilitate
comparison with previous work which employs a similar approach.

In a casino setting, between 3 and 6 six full decks of cards are shuffled
at the start of the first hand and the game is played until the cards run
out. Up to six players and one dealer may play at a blackjack table.

Again for simplicity, this implementation considers only a single
player playing against the dealer using a single deck of cards which
is shuffled at the start of each hand.

4.2.1. Bench–marking

In order to assess the performance of any evolved strategy, a set of
bench–marks must be obtained for comparison purposes. While there
have been many attempts to calculate the performance of blackjack
strategies using simulation and probabilistic techniques(Thorp, 1984;
R. R. Baldwin and McDermott, 1956; Thorp, 1963), the values pro-
duced tend to vary by a rather large margin. For instance, the success of
a player employing the standard dealer strategy is reported at between
39% and 44% wins.

As a result of these discrepancies, it was felt that it may be more
meaningful to calculate the values for various strategies using our own
simulation. These values will be more readily comparable to the perfor-
mance of evolved strategies, since a large proportion of the blackjack
simulator will also be used by the evolving populations to play games.

The blackjack simulator consists of a dealer, who employs the tradi-
tional dealer strategy of standing on 17 or greater, and a single player
whose strategy can be set at the beginning of the simulation. As in
previous work, both dealer and player hand values are calculated by
adding card values where each ace is counted as 11 unless it would
cause a bust.

Several strategies were considered:

− Dealer’s (Stand on 17 or more, Draw on less)

− Random

− Always stand

− Hoyle’s (based on the dealer’s up card and the possession of an
ace)

if (dealer card < 6)

if (ace is held)

stand on 15
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Table II. Blackjack Benchmarking

Strategy Percentage Wins Standard Deviation

Hoyle 43.70 1.587

Dealer 41.55 1.576

Uribe et al 38.76 1.505

Always Stand 37.91 1.531

Random 30.41 1.511

else

stand on 13

else

stand on 17

− Uribe Evolved Strategy (taken from the work of Uribe and Sanchez(Perez-
Uribe and Sanchez, 1998))

if (score> 9) or [(score> 13)and(score< 19) and

(an ACE is held)]

stand

else

hit with 50% probability

In order to produce statistically meaningful results, we performed
1000 runs of 1000 games for each strategy. The results presented in
Table 4.2.1 are average wins for each strategy. We can see from these
results that most strategies perform poorly against the dealer and that
Hoyles strategy performs best.

4.2.2. Experiments

Each experiment allows 100 agents to evolve over 400 generations. At
each generation, agents play 100 games against the dealer strategy and
an agents fitness is determined by the percentage of wins obtained
scaled to [0.0,1.0]. Crossover was set at 0.6 and mutation at 0.02.
The cultural learning settings of teacher ratio and teaching cycles were
set at 0.1 and 5 respectively. Cultural mutation was also added with
probability 0.05.
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Figure 6. Blackjack Population Fitness

An agents fitness is determined by the number of hands won, nor-
malised to the range [0,1]. This set of experiments does not allow agents
to develop card–counting strategies and therefore the fitness values
attained must be put into context with the probabilities of success
for non–card–counting strategies. It is exceedingly difficult to beat a
blackjack dealer consistently more than 50result approaching this figure
should be considered optimal.

Figure 6 shows the average error for both populations over the ex-
periment run, along with error bars showing fitness variance within
populations. Both populations show similar trends, stabilising within
100 generations to their relative maximum values. The population em-
ploying both population and cultural learning is clearly achieving a
higher average fitness than the population employing population learn-
ing alone.

Unlike the previous experiment, the fitness variance within the pop-
ulations is similar. This is most likely due to the low probability of any
particular individual performing particularly well. However, on average,
the worst individuals of the cultural learning population are performing
better than the best individuals of the population learning population.

Figures 7 and 8 show the average, maximum and minimum fitness
values for both populations. The minimum and maximum fitness values
are those of the average best and worst individuals of each generation.
Both minimum and maximum values are slightly higher for the popu-
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Figure 7. Blackjack Average, Maximum and Minimum Fitness for Non–Teaching
Population

Table III. Blackjack Average Fitness

Population Avg. Fitness Max Fitness Min Fitness S. D.

Pop. Learning 0.4726593 0.4898939 0.3129627 0.0002623

Cultural Learning 0.4941667 0.5128222 0.3311286 0.0004356

lation employing cultural learning. The cultural learning mechanism is
not only improving the worst individuals in the population, but is also
generating novel, high performing individuals.

Table III show the average, average maximum and average minimum
fitness values for both populations taken over the entire experiment
run. It is clear from these results that the population employing cultural
learning is superior in its development of strategies than the population
employing population learning alone. There is strong evidence (p value
< 0.0001, confidence interval 95%) that the difference in fitness levels
of the two populations is statistically significant.

In order to investigate the relative worth of the evolved blackjack
strategy compared to the bench–marked strategies described above, the
evolved strategy was extracted from the cultural learning population.
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Figure 8. Blackjack Average, Maximum and Minimum Fitness for Teaching Popu-
lation

This was done by presenting the population with every possible card
combination and examining the collective decision of the population.
The following resulting strategy was extracted:

if (an Ace is held)

{

if (dealer has a 6 or higher)

stand on 16

else

stand on 17

}

else

{

if (dealer has a 7 or higher)

stand on 17

else

stand on 13

}

The strategy was hard–coded into the blackjack simulator and 1000
runs of 1000 games were played. The averaged results are displayed in
Table IV.
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Table IV. Final Blackjack Benchmarking Results

Strategy % Wins Standard Deviation

Hoyle 43.69 1.573

Evolved 43.67 1.582

Dealer 41.52 1.571

Uribe et al 38.43 1.495

Always Stand 38.00 1.529

Random 30.67 1.507

There is strong evidence (p value <0.001, 95% confidence) to support
the claim that the evolved strategy and Hoyles strategy are equivalent
in terms of performance, suggesting that the population has evolved
an optimum strategy given the information available. It is likely that
in order to out–perform Hoyles strategy it is necessary to keep track of
cards that have been played during a game.
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Figure 9. Blackjack Average Fitness for Population Before and After Teaching
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As a final investigation into the effect of cultural learning on the
population, the cultural learning populations fitness was examined be-
fore and after the teaching cycle is applied. The results for this are
presented in Figure 9. As in the previous experiment, the application
of cultural learning is clearly producing higher fitness levels than popu-
lation learning alone. However, the cultural learning populations fitness
levels prior to teaching are slightly poorer than those of the population
learning population.

4.3. Connect Four

The game of connect–four is a two–player game played on a vertical
board of 7x6 positions into which pieces are slotted in one of seven
available slots. Each player is given a number of coloured pieces (one
colour per player) and must attempt to create horizontal, vertical or
diagonal piece–lines of length four. Players place one piece per turn
into one of the seven slots. The piece then falls onto a free position in
the chosen column, creating piles, or towers, of pieces. If a column is
full, the player must select an available slot.

Some research has been undertaken in the evolution of connect–
four players employing a library of existing games to train the neural
networks by back–propagation(Schneider and J, 2002) as well as rein-
forcement learning methods(Sommerlund, 1996). Our approach allows
agents to compete against each other and against a modified minimax
player.

Agents play games against a minimax player, whose first move is
randomized, allowing agents to play games of some variety. Fitness is
assigned according to the length of the game. In other words, agents
are rewarded for bringing the game to as close to a draw as possible,
as it is very difficult for an agent to beat the modified minimax player.

At each move, the current board position is taken and the agents
pieces are added iteratively into each slot. At each iteration, the net-
work is shown the board position through its 84 input nodes. In other
words, the network is shown the resulting board position arising from
each of it’s possible moves. Each board position produces a response
from the neural network’s output node and the strongest output re-
sponse is deemed to be the agents preferred board position.

4.3.1. Experiments

Populations of 50 agents to evolve over 400 generations. At each gen-
eration, agents play games against a the minimax player, once going
first and the second time second. Fitness is measured according to how
close the game comes to a draw and is scaled to [0,1]. Crossover was set
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Figure 10. Connect–Four Population Fitness

at 0.6 and mutation at 0.02. The cultural learning settings of teacher
ratio and teaching cycles were set at 0.1 and 5 respectively. Cultural
mutation was also added with probability 0.05.

The results illustrated in Figure 10 clearly show the effect of cul-
tural learning on the population. The population employing population
learning alone achieves fitness levels of around 0.6, indicating that the
population is at least capable of adequately competing against the
minimax player in more than half of games played.

However, when cultural learning is applied to the population, the
performance improvement is evident. The population achieves fitness
levels of close to 0.8, significantly higher than population learning alone,
indicating that the population is capable of performing well against a
minimax opponent.

Figures 11 and 12 show the average, maximum and minimum fitness
values for the two populations. A number of clear distinctions can
be observed from these results: firstly, average and maximum fitness
values are higher for the population employing cultural learning while
minimum values are not altered significantly. This implies that while
the cultural learning process is producing high performing individu-
als, there are still elements in the population that are incapable of
successfully interacting with their environment.

Secondly, the average fitness value is higher in the population em-
ploying cultural learning, as we have seen from Figure 4.3.1. However,
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Figure 11. Connect–Four Average, Maximum and Minimum Fitness for Non–Teach-
ing Population

the difference between the average and maximum fitness values is signif-
icantly reduced in the population employing cultural learning. Clearly,
the cultural learning process is not only generating novel, high per-
forming individuals, but it is also causing the entire population to
more closely resemble those individuals that are best adapted to their
environment.

Table V shows the average, average maximum and average minimum
fitness values for both population taken over the entire experiment
run. It is clear from these figures that cultural learning is producing
individuals of higher average fitness, but is also capable of producing
novel high performing individuals evidenced by the large differences
between the maximum values of both populations. Furthermore, there
is strong evidence (p value < 0.0001) that the performance differences
between the two populations are statistically significant.

Figure 13 shows the fitness values for the population employing
population learning alone, the cultural learning population prior to
teaching and the cultural learning population after teaching takes place.

Once again, as in previous experiments, cultural learning appears to
be selecting individuals for their genetic ability to learn, rather than
for their innate ability to solve a particular task. This is illustrated by
the fact that the fitness values for the population employing cultural
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Figure 12. Connect–Four Average, Maximum and Minimum Fitness for Teaching
Population

Table V. Connect–Four Average Fitness

Population Avg. Fitness Max Fitness Min Fitness S. D.

Pop. Learning 0.5369646 0.6320001 0.2542307 0.0059148

Cultural Learning 0.6648816 0.7993531 0.3689372 0.0109289

learning are considerably lower prior to teaching than those of the
population employing population learning alone.

Significantly, once teaching is applied to the cultural learning popu-
lation, the fitness level rises and considerably exceeds that of the pop-
ulation employing cultural learning alone. Thus, the cultural learning
process is generating individuals with a genetic predisposition toward
learning. If teaching is not applied such individuals perform poorly, but
as once teaching commences, the innate potential of such individuals
is realised in full.
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Figure 13. Connect–Four Average Fitness for Population Before and After Teaching

5. Discussion

The results obtained correlate with previous work, showing that the
addition of cultural learning is capable of enhancing population fit-
ness. The model of cultural transmission allows individuals to impart
information that they themselves have acquired culturally, rather than
innate knowledge, leading to some interesting results.

In particular, it is clear that culture is being passed on through gen-
erations, as the populations fitness continues to improve despite a sig-
nificant deterioration in innate fitness. The evolutionary process judges
individuals on the basis of their performance after cultural information
has been acquired and as a consequence, the genotypic behaviour of
individuals becomes less and less important as the cultural exchanges
become more successful. Individuals in a cultural learning setting only
become competitive once they acquire the populations culture. The
innate fitness of such individuals is considerably poorer than that of the
population learning population, indicating that most of the knowledge
required to survive in the environment is being stored in the culture,
not in the genomes.

First generation teachers impart innate knowledge, as they have
no teachers to imitate. From then on, pupils acquire knowledge that
has itself been acquired by their teachers, cascading back to the first
generation.
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However, the culture is constantly shaped by the influx and outflux
of different teachers and therefore changes in character over time. Such
information transmission is much faster than population learning, and
allows the cultural learning population to achieve higher fitness levels,
despite its genotypic deterioration.

6. Conclusion

This paper presents a model of cultural learning employing vertical
transmission of culture in a population of neural network agents pre-
sented with a set of sequential decision task problems. Cultural learn-
ing gives populations the opportunity to sample acquired information
within the population itself. This allows weaker members of the popula-
tion to gain access to environmental information which would otherwise
be impossible to attain without incurring possible fitness losses.

The model allows individuals to culturally impart knowledge they
themselves have acquired from previous teachers rather than transmit-
ting only innate knowledge. As in previous work, the results indicate
that cultural learning provides improved performance over population
learning in each test–case.

However, the results obtained with regard to the populations innate
fitness differ somewhat to those previously obtained. While the cultural
learning populations fitness continues to improve over time, its innate
fitness (the populations fitness prior to acquiring knowledge through
teaching) deteriorates significantly. Thus, a large portion of the popu-
lations knowledge about its environment is stored in the culture, rather
than in its genomes.

Future work will focus on the cultural transmission of knowledge in
dynamic environments, investigating whether the increased plasticity of
acquired culture (as opposed to genetically acquired knowledge) leads
to increased robustness.
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