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Abstract. This paper describes a cultural learning approach to the evo-
lution of agents to play the game of connect–four. Each agent has a neural
network responsible for perceiving the current board configuration and
selecting an appropriate next move. Populations evolve through popula-
tion learning, a process of Darwinian evolution, using genetic algorithms.
Cultural learning is implemented by selecting highly fit agents as teach-
ers to instruct the next generation. Teachers communicate with pupils
through a hidden layer in each neural network (the verbal input/output
layer) and pupils attempt to replicate utterances by back–propagation.
Experiments are conducted comparing the performance of populations
employing population learning alone and populations employing both
population and cultural learning.

1 Introduction

Cultural learning allows populations to pass on knowledge to the next generation
through non–genetic means through a process of communication or artifact cre-
ation. Populations employing such a mechanism should intuitively be inherently
more robust to changing and hostile environments. From an artificial intelli-
gence perspective, cultural learning is useful because it provides an interesting
alternative to more traditional life–time learning simulations.

In order to simulate cultural learning, teachers are selected from the popu-
lation and allowed to instruct the next generation. In this way, important in-
formation gained through the life-time of the previous generation is not lost
and the fitness of the entire population can be improved. More importantly, no
prior solution knowledge is required to produce solutions, making cultural learn-
ing an ideal candidate for sequential decision task solving and an alternative to
reinforcement learning or test–case approaches.

In this paper, we chose the game of connect–four as the sequential decision
task to be solved. While a simple game, connect–four requires the player to
develop a clear strategy to be consistently successful. In order to ascertain the
benefit of cultural learning, an initial set of experiments are performed with
populations employing only Darwinian–based population learning through the
use of genetic algorithms. A second experiment adds cultural learning to the
population.



Some research has been undertaken in the evolution of connect–four players
employing a library of existing games to train the neural networks by back–
propagation [1] and reinforcement learning methods [2]. This paper presents an
alternative approach to both.

The remainder of this paper is arranged as follows: Section 2 summarises
related research and background material. Section 3 discusses the encoding tech-
nique employed to allow neural network agents to play. Section 4 presents the
artificial life simulator employed to conduct the experiments. Section 5 illustrates
the experiment results. Section 6 concludes and suggests future work.

2 Related Work

The following section outlines some background material including learning mod-
els and the game of connect–four.

2.1 Learning Models

A number of learning models can be identified from observation in nature. These
can roughly be classified into population, life-time and cultural learning.

Population Learning Population learning refers to the process whereby a
population of organisms evolves, or learns, by genetic means through a Darwinian
process of iterated selection and reproduction of fit individuals. In this model,
the learning process is strictly confined to each organism’s genetic material:
the organism itself does not contribute to its survival through any learning or
adaptation process.

Life–time Learning By contrast, there exist species in nature that are capa-
ble of learning, or adapting to environmental changes and novel situations at
an individual level. Such learning, known as life–time learning is often coupled
with population–based learning, but further enhances the population’s fitness
through its adaptability and resistance to change. Another phenomenon related
to life-time learning, first reported by Baldwin [3], occurs when certain behaviour
first evolved through life-time learning becomes imprinted onto an individual’s
genetic material through the evolutionary processes of crossover and mutation.
This individual is born with an innate knowledge of such behaviour and, unlike
the rest of the population, does not require time to acquire it through life-time
learning. As a result, the individual’s fitness will generally be higher than that
of the population and the genetic change should become more widespread as the
individual is repeatedly selected for reproduction.

Research has shown that the addition of life-time learning to a population
of agents is capable of achieving much higher levels of population fitness than
population learning alone [4–7].



Cultural Learning Culture can be succinctly described as a process of in-
formation transfer within a population that occurs without the use of genetic
material. Culture can take many forms such as language, signals or artifactual
materials. Such information exchange occurs during the lifetime of individuals
in a population and can greatly enhance the behaviour of such species. Because
these exchanges occur during an individual’s lifetime, cultural learning can be
considered a subset of lifetime learning.

Experiments conducted by Hutchins and Hazlehurst [8] simulate cultural
evolution through the use of a hidden layer within an individual neural network
in the population. The hidden layer acts as a verbal input/output layer and
performs the task of feature extraction used to distinguish different physical
inputs. It is responsible for both the perception and production of signals for the
agent.

A number of approaches were considered for the implementation of cul-
tural learning including fixed lexicons [10, 11], indexed memory [12], cultural
artifacts [13, 14] and signal–situation tables [15]. The approach chosen was the
teacher/pupil scenario [16, 17, 11] where a number of highly fit agents are selected
from the population to act as teachers for the next generation of agents. Pupils
learn from teachers by observing the teacher’s verbal output and attempting to
mimic it using their own verbal apparatus. As a result of these interactions, a
lexicon of symbols evolves to describe situations within the population’s envi-
ronment.

2.2 Connect Four

The game of connect–four is a two–player game played on a vertical board of 7x6
positions into which pieces are slotted in one of seven available slots. Each player
is given a number of coloured pieces (one colour per player) and must attempt
to create horizontal, vertical or diagonal piece–lines of length four. Players place
one piece per turn into one of the seven slots. The piece then falls onto a free
position in the chosen column, creating piles, or towers, of pieces. If a column is
full, the player must select an available slot.

While the game appears simple, a certain amount of tactical knowledge is
required to play proficiently. The most obvious approach is to scan the board for
existing lines of three and either finish them to create four–in–a–line, or if the
line is the opponent’s, block it. However, as is the case in many games, the best
approaches focus on forcing the opponent to contribute to the player’s victory.
The two most popular techniques are outlined below.

Open Lines The basic premise of the open lines strategy, illustrated in the
left–hand board in Fig. 1, is to create a situation where a win is inevitable
regardless of any opponent’s move. A player must create a line of 3 pieces with
space available on both sides of the line. Since the opponent can only move one
piece at a time, this situation will always lead to player victory.
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Fig. 1. Connect–Four Strategies

Forced Open Lines The forced open lines strategy follow the same basic
premise as the open lines strategy, but actively forces the opponent into con-
ceding victory. This is achieved by placing pieces in such a manner that the
opponent must move into a column in order to prevent the player winning. Once
the opponent’s piece is in place, its position allows the player to complete a
different winning line. This is illustrated in the right–hand board in Fig. 1.

3 Game Encoding

In order for a population of neural networks to play games of connect–four,
a method must be developed to encode both the board’s current position and
decode the network’s output into a valid move.

3.1 Board Encoding

As the game of connect–four consists of a simple matrix with only two types
of piece (the player’s and the opponent’s), encoding the current board position
is not difficult. Two bits are used for each position on the board, where bit
patterns are chosen arbitrarily as: 00 for empty positions, 01 for player pieces
and 11 for opponent pieces. Each board position is encoded sequentially, creating
a bit string of 84.

3.2 Move Decoding

Move decoding takes the network’s output and determine’s the network’s chosen
move. During the preparation for these experiments, two decoding schemes were
considered.

Multiple Move Selection For the multiple move selection approach, an agent’s
neural network was allowed seven output nodes, each representing a possible
move. The network is shown the current board position and the strongest out-
put representing a valid move is chosen as the network’s output.



Multiple Board Selection The second approach changes the situation from
a choice of moves to a choice of board positions. The current board position
is taken and the agent’s pieces are added iteratively into each slot. At each
iteration, the network is shown the current board position, plus one of the seven
possible moves. This time, the neural network has only one output node and the
board position with the strongest output response is deemed to be the agent’s
preferred board position.

4 Simulator

The experiments outlined in this paper were performed using a previously devel-
oped artificial life simulator[18, 6, 7]. The simulator allows populations of neural
networks to evolve using a genetic algorithm and each network can also be trained
during each generation of an experiment to simulate life–time learning.

Each member of the population is in possession of both a phenotype (a neural
network) and a genotype (a gene code). The gene code is used to determine the
individual’s neural network structure and weights at birth. If the individual
is selected for reproduction, the gene code is combined with that of another
individual using the process of crossover and mutation to produce a genotype
incorporating features from both parents.

In order for this mechanism to function correctly, a mapping of a neural
network structure to a gene code is required. This is achieved using a modified
version of marker based encoding which allows networks to develop any number
of nodes and interconnecting links, giving a large number of possible neural
network architecture permutations.

Marker based encoding represents neural network elements (nodes and links)
in a binary string. Each element is separated by a marker to allow the decoding
mechanism to distinguish between the different types of element and therefore
deduce interconnections [19–21].

In this implementation, a marker is given for every node in a network. Fol-
lowing the node marker, the node’s details are stored in sequential order on the
bit string. This includes the node’s label and its threshold value. Immediately
following the node’s details, is another marker which indicates the start of one
or more node–weight pairs. Each of these pairs indicates a back connection from
the node to other nodes in the network along with the connection’s weight value.
Once the last connection has been encoded, the scheme places an end marker to
indicate the end of the node’s encoding (Fig. 3). This scheme allows any number
of hidden layers and nodes, giving great flexibility for experimentation.

The networks undergo various stages throughout their lifetime. Firstly, the
gene codes are decoded to create their neural network structure. Training is then
performed using error back–propagation for a given number of iterations (train-
ing cycles). Each network is tested to determine its fitness and the population is
ranked using linear based fitness ranking. Roulette wheel selection is employed
to generate the intermediate population. Crossover and mutation operators are
then applied to create the next generation.
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Fig. 2. Agent Communication Architecture

4.1 Simulating Cultural Evolution

In order to perform experiments related to cultural evolution, it was necessary to
adapt the existing simulator architecture to allow agents to communicate with
one another. This was implemented using an extended version of the approach
adopted by Hutchins and Hazlehurst. The last hidden layer of each agent’s neural
network functions as a verbal input/output layer (Fig. 2).

        Start Marker     Node Label    Threshold    Link to Node    Link Weight    Link to Node    Link Weight    End Marker

SM                        5     0.8              4      0.83    3                      -0.51                 EM... ...

Fig. 3. Marker Based Encoding

At the end of each generation, a percentage of the population’s fittest net-
works are selected and are allowed to become teachers for the next generation.
The teaching process takes place as follows: a teacher is stochastically assigned
n pupils from the population where n = Npop

Nteachers
, where Npop is the popula-

tion size and Nteachers is the number of teachers. Each pupil follows the teacher
in its environment and observes the teacher’s verbal output as it plays games
of connect–four. The pupil then attempts to emulate its teacher’s verbal out-
put using back-propagation. Once the teaching process has been completed, the
teacher networks die and new teachers are selected from the new generation.



5 Experiment Results

A population of 20 agents were allowed to evolve for 100 generations. At each
generation, agents play in a tournament against all other players. In addition,
each agent plays a minimax player with three levels of difficulty. In total, each
agent plays 22 games of connect–four in its lifetime. Agents are assigned fitness
according to each game’s result: 3 points for a both a win and a draw and 0
points for a loss. This gives a fitness range of [0,66].

Crossover was set at 0.6 and mutation at 0.02. The cultural learning settings
of teacher ratio and teaching cycles were set at 0.1 and 5 respectively. An addi-
tional parameter, cultural mutation, was also added. This generates noise in the
range [-0.5,0.5] to the teacher’s output when instructing a pupil with probability
0.05 and was found empirically to improve the performance of cultural learning.
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Fig. 4. Multiple Move Selection

The first two experiments employ population learning alone and are designed
to determine the best move–decoding approach as well as the performance of
population learning. The final experiment adds cultural learning to the popula-
tion. For the purposes of comparison, the performance of a player employing a
random strategy is illustrated along with the simulation results.

5.1 Multiple Move Selection

It is clear from the results illustrated in Fig. 4 that the agents are indeed evolving
to play better games of connect–four but that this evolution quickly stabilises at
fitness levels of around 42. The population appears to have stagnated and further
improvement is unlikely. However, the population’s performance far outstrips
that of the random player.



5.2 Multiple Board Selection

The second decoding strategy was more successful. Fig. 5 shows both the multiple
move and multiple board selection results to better illustrate the improvement.
The population have attained a higher level of fitness than the previous method.
In light of these results, we employed multiple board selection to conduct the
final experiment involving the addition of cultural learning to the population.

5.3 Cultural Learning

This final experiment adds cultural learning capabilities to the population. Teach-
ers play a full tournament while pupils observe, and at each move, the teacher
corrects the pupil’s perception through back–propagation. The results in Fig. 6
show that the addition of cultural learning provides the best performance and
that the fitness levels show an upward trend at the end of the experiment, sug-
gesting that the population is capable of further improvement.
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Fig. 5. Multiple Board Selection

6 Conclusion

These experiments show that cultural learning can be successfully applied in
populations of neural networks to develop strategies for the game of connect–
four. In addition, the preliminary experiments show that multiple board selection
delivers better results than multiple move selection. Since neural networks are
efficient classifiers it is intuitively preferable to present a selection of board con-
figurations to rank. Furthermore, the type of output required from multiple move
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Fig. 6. Cultural Learning

selection is very disparate and difficult for the network to learn efficiently: an
output of 000001 (a move in the seventh slot) is markedly different from 100000
(a move in the first slot).

Future work will concentrate on larger populations, larger simulations, vary-
ing the cultural learning parameters and more complex problems.
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