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1 Introduction

The two primary evolutionary forces in nature can be de-
scribed as population learning and lifetime learning. The first
examines the effect of genetic inheritance and its role in the
behaviour of living things. Populations of creatures evolve
through the processes of genetic recombination and mutation.
Over long periods, genetic encodings emerge which produce
phenotypic traits suitable for a particular environment, such
as webbed feet or enhanced vision, giving individuals compet-
itive advantage over others. As generations progress, useful
traits will be passed down successive populations resulting in
an overall fitness improvement.

Lifetime learning represents each individual’s ability to in-
teract and learn from its environment. Creatures which are
capable of correctly interpreting novel situations will be more
likely to survive the un—predictability of many habitats. Fur-
thermore, creatures which are capable of memory will recall
previous errors in similar situations, greatly reducing the risk
of repeated damaging behaviour. This learning mechanism is
also a driving force of evolution: as a result of fitness gains
brought by lifetime learning, the number of creatures capable
of lifetime learning increases and the population improves its
overall performance.

These two evolutionary forces can be simulated using ge-
netic algorithms and neural networks respectively. Genetic
algorithms represent potential problem solutions as genetic
codes which are then evaluated for fitness. Pairs of codes are
selected in proportion to their fitness and are combined to-
gether to produce offspring. These offspring become part of
the next generation and the process is repeated. Genetic al-
gorithms have been shown to be useful in a vast variety of
problem domains[1, 2].

Neural networks are simplified mathematical models of ner-
vous systems, inspired by the neurons and synapses of living
creatures. Neural networks function by reading input patterns
from specified input neurons, feeding these pattern values
through a succession of weighted synapses linking other neu-
rons, and finally displaying output values at specified output
neurons. By examining a network’s output pattern and the
desired output pattern for a given input, a measure of error
can be obtained. This error is then used to alter the weight-
ing value of synapses connecting neurons in the network. One

algorithm for performing this weighting adjustment is known
as error back propagation. Through a series of training itera-
tions, the overall error of a network is reduced, improving its
performance.

The combination of genetic algorithms and neural networks
provides a framework for evolutionary experimentation popu-
lar with much research including language evolution[3], neural
network design optimization [4, 5, 6] and games[7, 8]. To com-
bine the two approaches, the structure of the neural network
must be converted to a format which is suitable for the genetic
algorithm. For these experiments, a previously developed ar-
tificial life simulator was used which employs a process known
as marker based encoding|[7] to generate genetic encodings of
neural network structures and allows both lifetime and pop-
ulation based learning[9, 10].

The next section of this paper briefly outlines the struc-
ture and functionality of the artificial life simulator. Section
3, describes the experimental setup used for each experiment.
Section 4 shows the results obtained and finally, Section 5
ends with a conclusion.

2 Simulator

The architecture of the artificial life simulator can be seen as
a hierarchical structure. At the top-level of the simulator is
a command interpreter which allows users to define an ex-
periment’s variables including the number of networks, the
number of generations to run the experiment, mutation and
crossover rates and the actual problem set which the popula-
tion will be attempting to solve.

The neural network layer takes the variables set using the
command interpreter and initializes a given number of neu-
ral networks. The layer then performs training and testing
of the networks according to the parameters of the experi-
ment. These network memory structures are then passed to
the encoding layer which transforms them into genetic code
structures for use in the genetic algorithm.

The genetic algorithm layer uses the genetic codes and the
data retrieved from the neural network layer’s testing of the
networks to perform its genetic operators on the population.
A new population is produced in the form of genetic codes.



These are passed to the decoding layer which transforms each
code into a new neural network structure. These structures
are then passed up to the neural network layer for a new ex-
periment iteration. Once the required number of generations
has been reached the experiment finishes.

3 Experiment Setup

A population of 200 agents is randomly initialized at the be-
ginning of each experiment. The population is then allowed to
forage for food items, and each agent is allocated fitness ac-
cording to how well it distinguishes between food and poison
bit patterns. The food and poison bit patterns used in this
set of experiments are the 16 bit patterns of the 4-bit parity
problem thus generating an equal number of food and poison
elements in the population’s environment.

Two experiments are presented here - the first examining
the population’s performance in the face of gradual changes in
food and poison patterns and the second observing the popu-
lation’s behaviour in a environment which suddenly changes
completely. Each experiment is divided in two parts — one
using lifetime learning and the other not. In order to obtain
reliable results, each experiment is carried out 20 times to de-
rive an average population performance. The crossover rate
for each experiment was set at 0.6 and the mutation rate at
0.02. Each experiment allowed populations to evolve for 300
generations.

3.1 Gradual Environment Change

In order to simulate a gradual change in the environment,
the bit patterns representing food and poison must be al-
tered over time. The approach taken for this experiment is to
change one of the sixteen food or poison values every 19 gen-
erations. Thus, patterns which once represented food items
become poison and the makeup of the environment eventu-
ally reverses with respect to its initial parameters. The goal
of this experiment is to ascertain to what degree the popula-
tion is capable of recovering from each iterative change in its
environment.

3.2 Sudden Environment Change

The second experiment examines the behaviour of the pop-
ulation in the face of a dramatic change in food and poison
patterns. After a period of 150 generations, each of the six-
teen patterns is altered simultaneously to represent its oppo-
site, meaning that all food becomes poison and vice-versa - a
potentially catastrophic event for the population. The goal of
this experiment is to observe whether such a change will force
a population into virtual extinction or whether the population
is robust enough to recover.

4 Results
4.1 Gradual Environment Change

The results of the first experiment, gradual change without
lifetime learning, are illustrated in figure 1. Each change it-
eration can be clearly seen in the graph as a sudden plunge
in fitness at the change generation. This plunge is immedi-
ately followed by quite steep fitness gains suggesting that the
population does not take long to recover from such events.
The level of fitness peaks at around generation 160 before a
gradual descent in fitness. This descent is characterized again
by sharp falls in fitness but with subsequent climbs slowing
down, resulting in an overall loss.
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Figure 1. Gradual Change - No Lifetime Learning

It is interesting to note that the population peaks at around
the half-way mark in the experiment. At this point 8 of the
16 food and poison patterns have been reversed. Therefore,
the first eight patterns represent an inverse of the XOR, prob-
lem, while the second half represents the original XOR prob-
lem. It is possible that such a problem set is easier to solve
than either the full XOR or the full inverse XOR problems,
thereby resulting in higher population fitness. This would ex-
plain the gradual drop in fitness following the half-way mark.
As the problem begins to resemble the full inverse XOR, prob-
lem more and more, the population is increasingly unable to
solve the problem.

The second experiment immediately shows the gains pro-
duced by applied lifetime learning (figure 2). The population
achieves much higher levels of fitness than the previous ex-
periment. The first half of the experiment does not show the
same sudden drops in fitness (although smaller ones still oc-
cur) which were present in the previous experiment results
implying that lifetime learning is softening the effects of these
changes.

Once again, the population fitness peaks at around the half-
way mark, obtaining near optimum levels. Past this level, the
drops in fitness become more and more acute, as the problem
becomes more difficult for the networks to solve. The gains
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Figure 2. Gradual Change - Lifetime Learning

in fitness after each of these drops is significant however, sug-
gesting that given more time between changes, the population
would be able to recover.

4.2 Sudden Change
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Figure 3. Sudden Change - No Lifetime Learning

The first sudden change experiment results are illustrated
in figure 3. The population seems capable of achieving mod-
erate levels of fitness without lifetime learning, but the fitness
increase slows down considerably as the experiment nears the
half-way mark. The sudden change in environment at gener-
ation 150 causes a disastrous drop in fitness, down to around
0.15 — much lower than even the randomly generated initial
population at generation 1. This low level indicates that the
networks are completely incapable of reacting to a change of
this magnitude. The population then begins quite a sharp re-
covery which slows down considerably after generation 200
and stagnates to a level which is considerably lower than the
one previously achieved.

The second experiment again shows the benefit of introduc-
ing lifetime learning in a population faced with changing envi-
ronments. The graph in figure 4 shows a steady rise in fitness

Fitness

0.25

50 100 150 200 250 300
Generations

Figure 4. Sudden Change - Lifetime Learning

up to generation 150 with a fitness level already surpassing
that of the previous experiment. While the drop in fitness at
generation 150 is significant, it is not nearly as disastrous as
the one seen previously. Compared to a drop of nearly 0.3 in
the last experiment, the population’s fitness falls a mere 0.07
— showing that the population has been able to adjust to the
new problem without the need for any genetic change. The
fitness levels quickly rise again and surpass the level obtained
prior to the drop, continuing in to increase steadily.

5 Conclusion

These results clearly outline the robustness of a population
endowed with the ability to learn from its environment. In
each experiment, populations capable of learning were able to
sustain their fitness growth. Perhaps the more realistic grad-
ually changing environment proved more of a challenge to the
populations. As the experiments near their centre point, both
learning and non—learning populations achieved their fitness
peaks. This might imply that the evolved network architec-
tures happen to be suitable for the particular problem at this
point.

In such an environment, selection would ensure that net-
works which exhibit the ability to solve similar problems to
a reasonable level would propagate through the population.
However, once the problem begins to become more difficult,
these networks become less valuable as their ability to perform
well is impaired. The absence of networks capable of solving
the new problem causes the decrease in fitness witnessed in
both experiments.

The sudden change experiments highlight the superiority of
the lifetime learning approach. Not only is the drop in fitness
far less severe in the lifetime learning experiment, but the
fitness continues to rise steadily after this point. Perhaps it
is easier for evolutionary neural network populations to start
afresh with a completely different problem set rather than
a continually shifting one. Clearly, an environment which is
constantly changing presents far more difficulties to the evo-
lutionary process than one which changes, even dramatically,



only rarely. However, it is clear from both experiment sets
that the ability to learn during one’s lifetime is beneficial to
the population as a whole in both types of environment.
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