Evolving Crossover, Mutation and Training rates in
a Population of Neural Networks

Dara Curran and Colm O’Riordan
Dept. of Information Technology,
National University of Ireland, Galway.

Abstract. This paper describes a method of determining
the rates of crossover, mutation and training employed in
the evolution of a population of neural networks. The ge-
netic codes of the population are modified to include rate
data which evolves with the population to attain optimum
levels. We compare these results to experiments performed to
determine optimum rate values by trial and error.

1 INTRODUCTION

The combination of genetic algorithms and neural networks
has been shown to be successful in a variety of problem do-
mains [1, 2, 3, 4]. The evolutionary approach of genetic algo-
rithms has been shown to guide the neural network’s data pro-
cessing capability to high levels of performance. In a typical
implementation, the genetic algorithm is employed to gener-
ate a population of random neural network architectures, each
of which is trained and tested to evaluate its performance.
The genetic codes of successful networks are then combined
to create the next generation. As the genetic algorithm can
be designed to select particular network characteristics (such
as small number of nodes and links), the approach yields very
efficient neural network architectures with little or no human
intervention.

The genetic algorithm uses several operators including
crossover and mutation. Crossover allows offspring to inherit
portions of each parent’s genetic code, thus probing new
search spaces while the mutation operator modifies the off-
spring’s genetic code in order to both open up un-explored
search spaces and slow the process of stagnation.

Typically, the behaviour of both these operators is deter-
mined by a rate, usually expressed as a percentage or proba-
bility. A crossover rate of 0.75, for instance, means that when
any two agents mate, their genetic codes will undergo the pro-
cess of crossover with a probability of 75%. Similarly, a mu-
tation rate of 0.5 indicates that each bit in the offspring’s ge-
netic code will be modified with probability 50%. These rates
seriously affect a population’s performance. For instance, a
setting of 0.00 crossover, would create a stagnant population
of cloned networks, while a population evolved using a mu-
tation rate of 0.8 would exhibit very erratic behaviour as a
result of constant genetic changes.

The third rate examined in this paper is that of training.
Each network is given the opportunity to reduce its error via
learning using error back propagation. Generally speaking,

the more a network is trained, the better it will perform its
task — although, over—training is possible.

It can be difficult to determine values for any of these rates
in advance of a given experiment. Usually several trial and
error attempts must be made before an appropriate setting
is found. This paper presents a method of evolving optimal
rate values for crossover, mutation and training for a popu-
lation of neural networks. All experiments assume that rates
are independant and that optimum values can be determined
for each individually. Future work will concentrate on exper-
iments attempting to evolve all rates simulatenously.

The next section of the paper describes related research
which has been performed. Section 3 briefly describes the ar-
tificial life simulator used in this set of experiments. Section
4 presents results for the first set of experiments, where rates
are determined in an iterative manner. Section 5 describes
the method employed for the evolutionary rate determination
experiments as well as their results. Finally, Section 6 ends
with a conclusion and an indication of future work.

2 RELATED WORK

The combination of neural networks and genetic algorithms
originally stemmed from the desire to generate neural net-
work architectures in an automated fashion using genetic al-
gorithms [1, 2]. The advantage of this approach is that neu-
ral networks can be selected according to a variety of cri-
teria such as number of nodes, links and overall accuracy.
The neural network component, on the other hand, provides
computational functionality at an individual level within the
genetic algorithm’s population. The combination of genetic
algorithms and neural networks has since been proven suc-
cessful in a variety of problem domains ranging from the study
of language evolution [3] to games [4].

Some research has also been performed on the evolution of
crossover in a genetic algorithm, notably by Spears [5]. Ex-
periments were performed to allow populations to determine
the crossover type to employ for a given problem. The popu-
lations were allowed to choose between 1-point and 2-point
crossover. This was achieved by appending extra bits to each
genetic code in the population to represent either 1 or 2-point
crossover. As the population evolved, individuals carrying the
most successful crossover type emerged as dominant. Thus,
at the end of each experiment it was possible to observe the
evolved preference to each crossover method.

3 ARTIFICIAL LIFE SIMULATOR

The experiments outlined in this paper were performed using
a previously developed artificial life simulator [6, 7, 8]. The
simulator allows populations of neural networks to evolve us-
ing a genetic algorithm and each network can also be trained
during each generation of an experiment to simulate life-time
learning.

The mapping of neural network to genetic code required
for the genetic algorithm is achieved using a modified version
of marker based encoding. This allows networks to develop
any number of nodes and interconnecting links, giving a large
number of possible neural network architecture permutations.

Marker based encoding represents neural network elements
(nodes and links) in a binary string. Each element is separated
by a marker to allow the decoding mechanism to distinguish
between the different types of element and therefore deduce
interconnections [9, 10].

In this implementation, a marker is given for every node
in a network. Following the node marker, the node’s details
are stored in sequential order on the bit string. This includes
the node’s label and its threshold value. Immediately follow-
ing the node’s details, is another marker which indicates the
start of one or more node—weight pairs. Each of these pairs
indicates a back connection from the node to other nodes in
the network along with the connection’s weight value. Once
the last connection has been encoded, the scheme places an
end marker to indicate the end of the node’s encoding.

The networks undergo various stages throughout their life-
time. First, the gene codes are decoded to create their neu-
ral network structure. Training is then performed using error
back—propagation for a given number of iterations (training
cycles). Each network is tested to determine its fitness and
the population is ranked using linear based fitness ranking.
Roulette wheel selection is employed to generate the interme-
diate population. Crossover and mutation operators are then
applied to create the next generation.

Since the goal of this paper is to demonstrate rate evolution,
not complex problem solving, the problem set chosen for these
experiments is 3-bit parity, a problem of modest complexity
but which allows numerous experiments to be undertaken in
a short space of time.

4 EXPERIMENTAL RATE
DETERMINATION

These experiments were designed to give an approximation of
the optimal rates of crossover, mutation and training. Each of
the rates was modified for each experiment to observe to what
degree each rate affects the population’s performance. The ex-
periments use 500 networks which evolve for 500 generations.
The rates for each experiment were set as follows:

- Crossover Experiment — Mutation set at 0.02, training cy-
cles set at 10.

- Mutation Experiment — Crossover rate set at 0.5, training
cycles set at 10.

- Training Experiment — Crossover rate set at 0.5, mutation
set at 0.02.

Each experiment was carried out 20 times to ensure an
accurate estimation of each of the rates.

4.1 Crossover

0.75

Fitness

0.00 Crossover — - —
0.25 Crossover — — -
0.50 Crossover
0.75 Crossover = = =
1.00 Crossover - ----+

0 50 100 150 200 250 300 350 400 450 500
Generations

Figure 1. Crossover Rate Determination

The chosen encoding scheme does not permit crossover to
operate at the bit level as this could result in the generation
of invalid gene codes. Therefore the crossover points are re-
stricted to specific intervals — only whole node or link values
may be crossed over.

These results show that at certain levels, the crossover oper-
ator begins to negatively affect the population’s performance
(fig.1). At low levels of crossover this can be interpreted eas-
ily: network offspring are often merely clones of their parents
thereby impeding the progress of the genetic algorithm. It is
interesting to note that the highest level of fitness achieved
occurs when crossover is set at 0.5, narrowly out—performing
the 1.0 crossover rate. The fact that the fitness drops consider-
ably when crossover is set at 0.75 would seem to indicate that
the optimal level is somewhere between 0.5 and 0.75. Thus,
allowing crossover to occur too often has negative effects on
the population’s fitness. This may be because valuable indi-
viduals are sometimes lost in the process of crossover and
the population is unable to achieve high levels of fitness as a
result.

4.2 Mutation

As a result of the encoding scheme employed, the mutation
operator in the artificial life simulator may only operate at the
weight encoding level and bit-level mutation is not possible as
it could result in the generation of invalid gene codes. Instead,
weight encodings are modified by a percentage in the range
-200% to +200%.

Since mutation is essentially a disruptive element in the
genetic algorithm, one would expect that high levels of muta-
tion would cause a decrease in the population’s fitness. This
expectation appears to be justified by the results presented in
fig. 2. The 0.02 mutation rate appears to be the best available
option, as it performs better than no mutation and pushed to
higher levels, the population’s fitness begins to fall. However,
0.02 mutation may not be necessarily the optimum level. It is

0.7

Fitness

R W o o T [R e 0 Mutation —— |

0.0(
0.0:
0.0:
0.0

6 Mutation - - -~ -

0 50 100 150 200 250 300 350 400 450 500
Generations

Figure 2. Mutation Rate Determination

possible that a better performance could be obtained by set-
ting the mutation level at between 0.00 and 0.02 or between
0.02 and 0.04.

4.3 Training Cycles

Fitness

"o Trainfng Cycles‘
50 Training Cycles — — -
/100 Training Cycles_- - -

0 10 20 30 40 50 60 70 80 90 100

0.3

Generations

Figure 3. Training Rate Determination

The training cycle rate determines how often error back
propagation is performed on a neural network. As is evident
from fig. 3, the population performs better as more training is
applied. It would seem that the more training is applied to the
population, the faster the initial fitness jump. In the case of 50
training cycles the population’s fitness reaches 0.9 in 30 gen-
erations. When the training cycles are increased to 100, the
population reaches the same level in a mere 12 generations.
It is interesting to note, that despite this increased acceler-
ation, the population’s fitness converges at generation 60 for
both these rates. Only after generation 75 does the additional
training finally overtake the 50 training cycle graph. It would
appear from these results that 50 training cycles should be
ample to give the population a high level of fitness.

5 EVOLUTIONARY RATE
DETERMINATION

This set of experiments was designed to allow populations to
adapt the rates of crossover, mutation and training to deter-
mine the optimal level of each. In order to achieve this goal,
changes were made to the structure of the genetic codes of
each member of the population to allow the incorporation of
rate data.

At the beginning of an experiment, randomly determined
rate values are appended to each individual’s genetic code.
These values are integers in the range 0 — 100 and are encoded
into 6-bit strings. The encoded rate values undergo separate
crossover and mutation processes following those of the main
genetic string and using the same probability values.

The behaviour of each rate value varies according to its
operator. When two networks are selected as parents, the
crossover rate values for each is examined and an average
is taken to determine the crossover rate to be used. The par-
ent gene codes will then undergo crossover according to this
probability value.

The mutation operator is used on the offspring gene codes
generated following the crossover process. The operator uses
the inherited rate value of an individual offspring to determine
its mutation rate. Each weight encoding in the offspring’s gene
code will be modified according to this probability value.

The training rate is also inherited and represents the num-
ber of training cycles that a neural network receives. At each
cycle, the network’s error is reduced using error back propa-
gation, so in general, the more cycles a network receives, the
better it performs.

Enough randomly generated networks must be produced in
order to create a sufficiently large spread of values to allow
potentially beneficial values to propagate across generations.
The population size must also be small enough to allow the
experiments to be undertaken in a reasonable length of time.
After several trial runs, it was determined that the optimum
population size to set the experiments was 500.

As the population evolves, individuals are selected accord-
ing to their ability to solve the given problem. At the same
time, rate values which they have inherited from past gen-
erations also evolve. Values that cause networks to perform
poorly (such as excessively high mutation rates) should be-
come extinct from the population as the badly performing
individual is less likely to be selected for mating. Similarly,
values which create the least disruption and the most benefit
to an individual’s performance will become more prominent
in the population.

5.1 Experiment setup

500 networks are randomly generated at the start of each
experiment to allow a suitably larger spread of rate values to
be present in the initial population. The networks are then
allowed to evolve to solve the 3-bit parity problem for 100
generations. The crossover rate was set to 0.5, the mutation
rate to 0.02 and training at 10 training cycles, where these
rates where not the focus of the experiment. Each experiment
was carried out 20 times.

Crossover Rate

i i i i i i i i i
0 10 20 30 40 50 60 70 80 90 100
Generations

Figure 4. Crossover Rate Evolution

5.2 Evolution of Crossover Rates

The results for the evolution of the crossover rate are il-
lustrated in fig. 4. The population begins with an average
crossover rate of 0.48 which quickly ascends to over 0.66. How-
ever, the rate begins to fall sharply before stabilising some-
what at around 0.58—0.59. The initial sharp rise is most likely
aresult the initial population’s poor fitness — a high crossover
rate is useful in such situations because it allows more com-
prehensive probing of the search space to occur. In response
to an increase in population fitness, the crossover rate then
drops as exhaustive probing is no longer desirable. The final
crossover rate evolved by the population seems to fit with the
predicted rate of crossover (between 0.5 and 0.75) determined
in the previous experiment set.

5.3 Evolution of Mutation Rates

Mutation Rate

i i i i i i i i i
0 10 20 30 40 50 60 70 80 90 100
Generations

Figure 5. Mutation Rate Evolution

Fig. 5 shows the evolution of the population’s mutation
rate. This experiment begins with an average mutation rate

of 0.45 — one which is large enough to have disastrous conse-
quences on any offspring subjected to it. This is reflected by
the results, which show that the population rejects this value
and forces it to plummet down to below 0.05. At this point,
the drop slows down considerably indicating that the popu-
lation has found a near optimum level of mutation. Following
the generation 90, the mutation rate levels to around 0.025.
This value lies in the range 0.02 — 0.04, one of the ranges
predicted from the previous experiment set.

5.4 Evolution of Training Cycles

50

Training Rate

25

0 10 20 30 40 50 60 70 80 90 100
Generations

Figure 6. Training Rate Evolution

The evolution of the training rate was treated slightly dif-
ferently from the others to favour networks able to acheive
high fitness without the need for excessive training. Since the
training process is very time consuming, it would be useful
to adapt the training rate to give the maximum fitness im-
provement for the least effort. To encourage the evolution of
such a training rate, the fitness function was altered to reward
networks with lower training rate values.

The results illustrated in fig. 6 show an initial sharp increase
in training rate, followed by a gradual fall to only 27 training
cycles. It should be noted that the population’s fitness during
this gradual fall remained above 0.95 at all times. The popu-
lation spends the initial 10 generations undergoing intensive
training and once the networks have acheived a sufficiently
high fitness, the population’s reliance on training appears to
subside.

5.5 Comparison of Performance of Evolved
Rates to that of Designed Rates

A final experiment was performed to observe the performance
of the evolved rates versus the designed rates. The perfor-
mance of two populations are illustrated in fig. 7. The first
population uses the crossover, mutation and training rates
arrived at from iterative experimentation in section 4, that
is crossover at 0.625, mutation at 0.02 and training at 100
cycles.

Fitness

Determined Rates:
Evolved Rates— — -

0.4 i i i i i i M M M
0 10 20 30 40 50 60 70 80 90 100
Generations

Comparison of Performance of Evolved Rates to that
of Designed Rates

Figure 7.

The second population uses the rates evolved for crossover
(0.59) and mutation (0.025) but is allowed to evolve and adapt
the training rate as in section 5.4. This is because the evolu-
tion of training rate does not appear to result in an optimum
value, rather it is the process of adaptation that results in im-
proved performance. Both populations were allowed to evolve
for 100 generations and the experiment was repeated 20 times.

The results show that the evolved rates slightly outperform
the designed rates. However, the designed rates population
is using a training rate of 100 cycles for the entire experi-
ment, thus inhibiting its performance in terms of time, while
the evolved rates population is adapting its training rate as
each generation passes, allowing it to reduce the training rate
considerably and thus greatly out—performing the determined
rates population in terms of execution time.

6 CONCLUSION

The results of the evolutionary rate determination experi-
ments show that it is possible to determine the optimal set-
ting for crossover and mutation for a given problem set. This
effectively eliminates the requirement for trial and error esti-
mation of these rates. The values achieved are very close to
the values predicted by the first set of experiments, where the
rates were modified in order to find the optimum by trial and
error.

In addition, the results show that allowing a population
to determine its own training rate dynamically can produce
a better performance both in terms of fitness and execution
time. Future work will examine the relationship between each
rate and attempt to evolve all rates simulatenously in both
static and changing environments.

ACKNOWLEDGEMENTS

This research is funded by the Irish Research Council for Sci-
ence, Engineering and Technology.

REFERENCES

(1]

(2]

(3]

[4]

[5]

(6]

(7]

(8]

[9]

[10]

P. J. Angeline, G. M. Saunders, and J. P. Pollack. An evolu-
tionary algorithm that constructs recurrent neural networks.
IEEE Transactions on Neural Networks, 5(1):54-65, January
1994.

R. K. Belew, J. Mclnerney, and N. N. Schraudolph. Evolv-
ing networks: Using the genetic algorithm with connection-
ist learning. In Christopher G. Langton, Charles Taylor,
J. Doyne Farmer, and Steen Rasmussen, editors, Artificial
Life I1, pages 511-547. Addison-Wesley, Redwood City, CA,
1992.

B. MacLennan. Synthetic ethology: An approach to the study
of communication. In Artificial Life II1: The Second Workshop
on the Synthesis and Simulation of Living Systems, Santa Fe
Institute Studies in the Sciences of Complexity, pages 631—
635, 1992.

D. Moriarty and R. Miikkulainen. Discovering complex oth-
ello strategies through evolutionary neural networks. Con-
nection Science, 7(3-4):195-209, 1995.

W. M. Spears. Adapting crossover in evolutionary algorithms.
In J. R. McDonnell, R. G. Reynolds, and D. B. Fogel, editors,
Proc. of the Fourth Annual Conference on Evolutionary Pro-
gramming, pages 367-384, Cambridge, MA, 1995. MIT Press.
D. Curran and C. O’Riordan. Learning in artificial life so-
cieties. In Report number nuig-it-220202. Technical Report,
Dept. of IT. NUI, Galway, 2002.

D. Curran and C. O’Riordan. On the design of an artifi-
cial life simulator. In R.J.Howlett V.Palade and L.C.Jain,
editors, Proceedings of the Seventh International Conference
on Knowledge-Based Intelligent Information € Engineering
Systems (KES 2003), University of Oxford, United Kingdom,
2003.

D. Curran and C. O’Riordan. Artificial life simulation us-
ing marker based encoding. In Proceedings of the 2003 In-
ternational Conference on Artificial Intelligence (IC-AI’03),
volume II, pages 665-668, Las Vegas, Nevada, USA, 2003.
H. Kitano. Designing neural networks using genetic algorithm
with graph generation system. In Complex Systems, 4, 461-
476, 1990.

P. M. Todd G. F. Miller and S. U. Hedge. Designing neu-
ral networks using genetic algorithms. In Proceedings of the
Third International Conference on Genetic Algorithms and
Their Applications, pages 379-384, 1989.

