
An Analysis of Evolved Term-weighting schemes in
Information Retrieval

Ronan Cummins
Dept. of Information Technology

National University of Ireland
Galway, Ireland

ronan.cummins@nuigalway.ie

ABSTRACT
Machine Learning techniques are increasingly being applied
to many areas in Information Retrieval. Evolutionary com-
putation and Genetic Programming in particular have been
shown to be a viable alternative to other standard analyt-
ical methods for developing term-weighting schemes in IR.
This paper presents term-weighting schemes that have been
evolved in both a global (collection-wide) and local (within-
document) context.

In particular, global term-weighting schemes are evolved
which have characteristics similar to that which Luhn pre-
dicted would lead to identifying terms with a high resolv-
ing power. Local (within-document) weighting schemes are
evolved dependent on the best performing global scheme
and we show an increase in mean average precision over the
BM25 scheme for the full evolved scheme (i.e. the combined
local and global scheme). A term-frequency influence analy-
sis of best performing within-document scheme is shown to
behave similarly to that of Okapi-tf when its term-frequency
influence parameter is assigned a low value.

The document normalisation part of the evolved local
scheme does not perform as well as Okapi-tf on long doc-
uments. We conclude that Okapi-tf can be tuned to in-
teract effectively with the evolved global weighting scheme
presented and increase average precision over the standard
BM25 scheme.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval, Retrieval models, Search process

General Terms
Algorithms, Experimentation

Keywords
Genetic Programming, Term-Weighting Schemes, Informa-
tion Retrieval

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

1. INTRODUCTION
There have been many approaches applying evolutionary

computation techniques to the domain of Information Re-
trieval (IR). Evolutionary computation techniques are prov-
ing to be a viable alternative to other standard analyti-
cal methods in many areas of IR. Genetic Algorithms and
Genetic Programming [10] have been shown to be effec-
tive approaches to learning term-weights and term-weighting
schemes in IR. These approaches, inspired by Darwin’s the-
ory of Natural Selection [2], are stochastic in nature and
efficient for searching large complex search spaces.

Genetic algorithms have been used to modify document
representations (a set of keywords) to aid in the retrieval
of relevant documents [6, 24]. Genetic programming tech-
niques have also been adopted to evolve weighting functions
which outperform standard weighting schemes in a vector
space framework [3, 13, 21]. However, in many of these ap-
proaches a critical analysis of the solutions evolved is not
presented.

This paper outlines a Genetic Programming (GP) process
which evolves term-weighting schemes in a vector space frame-
work. Our research differs from other approaches in that
the process is separated into two steps. Firstly, we evolve
weighting schemes in a global domain which promote the
best terms to use in distinguishing documents. Then, us-
ing the best global scheme, we evolve local schemes which
use within-document measures to improve the mean average
precision of the system. This process eases analysis of the
evolved schemes and importantly reduces the search space
considerably by separating the measures into their respec-
tive domains.

Section 2 introduces some IR background and some mod-
ern term-weighting approaches. The Genetic Programming
approach is discussed in section 3. Section 4 details the ex-
perimental setup and benchmark schemes used. Results and
analysis are presented in section 5 and finally our conclusions
are summarised in section 6.

2. IR BACKGROUND
In this section we briefly outline modern term-weighting

approaches and summarise some IR background relevant to
this research.

2.1 Term-Weighting
The BM25 weighting scheme, developed by Robertson et

al. [16], is a weighting scheme based on the probabilistic

model. Okapi-tf is calculated as follows:

Okapi-tf =
rtf

rtf + (k1 × ((1 − b) + b × dl

dlavg
))

(1)

where rtf is the raw term frequency and dl and dlavg are
the length and average length of the documents respectively.
k1 is the term-frequency influence parameter and b is the
document length influence tuning parameter. The idf of a
term as determined in the BM25 formula is as follows:

idft = log(
N − dft + 0.5

dft + 0.5
) (2)

where N is the number of documents in the collection and
dft is the number of documents a term appears in. The score
of a document d in the BM25 ranking function can then be
calculated as follows:

score(d, q) =
�

t∈q∩d

(Okapi-tf × idft × qrtf) (3)

where qrtf is the raw term frequency in the query and t is
a term in the query q and document d.

Another modern matching function is the pivoted docu-
ment length normalisation scheme. The score of a document
in this scheme is calculated as follows [19]:

�

t∈q∩d

(
1 + log(1 + log(rtf))

(1 − s) + s dl

dlavg

× log(
N + 1

df
) × qrtf) (4)

where s is the slope and is a constant value of usually about
0.2.

2.2 Resolving Power of Significant Terms
Luhn [12] proposed that terms that occur too frequently

have little power to distinguish between documents and that
terms that appear infrequently are also of little use in dis-
tinguishing between documents. Thus in Figure 1, the bell-
shaped curve relates the frequency of terms to their distin-
guishing (resolving) power. Salton et al. [17, 18] validate

Figure 1: Resolving Power of Significant Terms

much of Luhn’s work with empirical analysis. They arrive at
similar conclusions to that of Luhn; that middle frequency
terms are the most useful in terms of retrieval. Low fre-
quency terms are, on average, poor discriminators while high
frequency terms are the least useful [17]. It can been ob-
served that idf is not fully consistent with Luhn’s theory
that the resolving power of terms with a low frequency is
also low. Greiff [7] has also indicated that a flattening of

idf at a low frequency level would lead to an increase in
performance.

3. GENETIC PROGRAMMING
This section introduces and summarises the Genetic Pro-

gramming process.

3.1 Basic Algorithm
Genetic Programming [10] is a heuristic stochastic search-

ing algorithm, inspired by natural selection [2], and is effi-
cient for navigating large complex search spaces. In the GP
process, a population of solutions is created randomly. The
solutions are encoded as trees and can be thought of as the
genotypes of the individuals. Each tree (genotype) contains
nodes which are either functions (operators) or terminals
(operands). The values on the nodes of each tree are re-
ferred to as alleles. Each solution is rated based on how it
performs in its environment. This is achieved using a fit-
ness function. Having assigned the fitness values, selection
can occur. Individuals are selected for reproduction based
on their fitness value. Fitter solutions will be selected more
often.

Once selection has occurred, reproduction can start. Re-
production (recombination) can occur in variety of ways.
The most common form is sexual reproduction, where two
different individuals (parents) are selected and two sepa-
rate children are created by combining the genotypes of
both parents. Mutation (asexual reproduction) is the ran-
dom change of allele of a gene to create a new individual.
Selection and recombination occurs until the population is
replaced by newly created individuals. Once the recombi-
nation process is complete, each individual’s fitness in the
new generation is evaluated and the selection process starts
again. The process usually ends after a predefined num-
ber of generations, or until convergence of the population is
achieved or after an individual is found with an acceptable
fitness.

3.2 Selection
Tournament selection is one of the most common selec-

tion method used. In tournament selection, a number of
solutions are chosen at random from the population and
these solutions compete with each other. The fittest solu-
tion is then chosen as a parent. The number of solutions
chosen to compete in the tournament is called the tourna-
ment size and this can be increased or decreased to increase
or decrease the speed of convergence.

3.3 Reproduction
Crossover is the main reproductive mechanism in GP.

When two solutions are selected from the selection process,
their genomes are combined to create a new individual. An
example of crossover can be seen in Figure 2.

3.4 Fitness Function
The mean average precision (MAP), used as the fitness

function, is calculated for each scheme by comparing the
ranked list returned by the system for each query expansion
scheme against the human determined relevant documents
for each query. Mean average precision is calculated over
all points of recall and is frequently used as a performance
measure in IR systems as it provides a measure of both the
accuracy and recall of the retrieval system.

Figure 2: Example of crossover in GP

4. EXPERIMENTAL SETUP
The following section introduces the terminal and function

sets, document test collections, benchmark term weighting
schemes and GP parameters used in our experiments.

4.1 Functions and Terminals
Tables 1 and 2 show the global and local terminal sets

respectively. Table 3 shows the function set.

Table 1: Global Terminal Set

Terminal Description

1 the constant 1
10 the constant 10
N no. of documents in the collection
df no. of documents a term occurs in
cf no. of times a term occurs in the collection
V no. of unique terms in the collection
C total no. of words in the collection
0.5 the constant 0.5

Table 2: Local Terminal Set

Terminal Description

1 the constant 1
10 the constant 10
rtf raw term frequency
l length of document vector
tl total number of words in document
max freq frequency of most common term in document
lavg average length of document vector
0.5 the constant 0.5

Table 3: Function Set

Function Description

+, ×, /, - standard arithmetic functions
log the natural log
√

square-root function

sq square

4.2 Document Test Collections
We use the OHSUMED1 collection [8] for training and

evaluation. We divide the OHSUMED collections into col-
lections of various sizes. Our training data consists of the
first half of the 1988 documents (around 35,000 documents).
We use the description field of the 63 OHSUMED topics for
our queries. The relevance assessments for the OHSUMED
collection are graded as definitely or possibly relevant which
we regard as relevant.

We also use collections from TREC disks 4 and 5, and a
set of 50 TREC topics on each of these collections. For each
set of 50 topics we create a short query set which consists
of only the title fields of the topics, a medium length query
set which consists of the title and description fields, and a
long query set which consists of the title, description and
narrative fields. We ignore topics that have no relevant doc-
uments associated with them. The documents and queries
are pre-processed by removing standard stop-words from the
Brown Corpus2 and are stemmed using Porter’s stemming
algorithm [15]. Table 4 shows some characteristics of the
test collections used in this research.

Table 4: Characteristics of Document Collections

Collection # Docs length # Topics length

TRAIN’88 35,412 72.7 0-63 4.97
OHSU’88 70,825 75.2 0-63 4.97
OHSU’89 74,869 76.9 0-63 4.97
OHSU’90-91 148,162 81.4 0-63 4.97
LATIMES 131,896 251.6 301-350 (short) 2.42

301-350 (med) 9.92
301-350 (long) 29.86

FBIS 130,471 249.9 351-400 (short) 2.42
351-400 (med) 7.88
351-400 (long) 21.98

4.3 GP Parameters
All tests are run for 50 generations with an initial random

population of 100 solutions. It is seen from sample tests that
convergence occurs before 50 generations. The tournament
size is set to 4. The depth of the solutions is limited to 6 to
improve the generality of the solutions while allowing a suit-
ably large solution space to be searched. The creation type
used is the standard ramped half and half creation method
used by Koza [10]. 4% mutation is used in our experiments.
Due to the stochastic nature of GP a number of runs is
often needed to allow the GP converge to a suitably good
solution. We run each test 4 times and choose the best gen-
eral solution from those runs. We test the best performing
solution from each run for generality on the OHSU’88 col-
lection. We then choose the best general solution to include
in this paper. A run takes about 24 hours on a 2.0 GHz
processor with 500Mbs of RAM. The training set used for
all experiments is the TRAIN’88 collection.

4.4 Benchmark Schemes
The query weighting scheme used for the terms in the

query is simply the raw term-frequency of the term in the
query. The benchmark scheme used for the BM25 scheme

1http://trec.nist.gov/data/t9 filtering.html
2http://www.lextek.com/manuals/onix/stopwords1.html

has default values of k1=1.2 and b=0.75 [23]. Suggested
values for k1 range between 1.0 and 2.0 [16]. Table 5 shows
the performance of the default tuning parameters and the
performance when k1=2 as this is another commonly used
value. For all the schemes which use Okapi-tf in this re-
search b was set to 0.75 as default. The pivoted normalisa-
tion scheme (Piv) with a default value for s of 0.2 is also
shown in Table 5. The BM25 scheme with k1=1.2 was found
to be the best performing scheme and is used in empirical
comparisons against our evolved schemes in the results and
analysis section.

Table 5: % MAP for Benchmarks

Collection Topics BM25 Piv

k1=2.0 k1=1.2

TRAIN’88 0-63 21.10 23.25 21.57
OHSU’88 0-63 30.98 32.79 31.08
OHSU’89 0-63 29.00 30.69 30.07
OHSU’90-91 0-63 27.56 28.08 26.28
LATIMES 301-350 (short) 23.32 24.18 24.26

301-350 (med) 24.29 25.61 25.48
301-350 (long) 25.84 25.82 24.56

FBIS 351-400 (short) 16.34 17.55 15.90
351-400 (med) 18.49 19.53 17.92
351-400 (long) 19.60 21.84 18.41

4.5 Approach Adopted
The underlying framework adopted here is similar to those

adopted previously [4, 13, 20]. However, there are some fun-
damental differences in the aim of the experiments. While
others have evolved full weighting schemes and have shown
an increase in average precision over standard weighting
schemes, reasons for the increase are not presented and are
difficult to analyse. This two step process reduces the size
of the search space and also provides a means of analysis
against standard tf-idf type solutions.

Firstly, we evolve the global weight (gwt) with a binary
weighting on the local (within-document) weighting (lwt)
using terminals from Table 1 and functions from Table 3.
This is done so that significant terms, i.e. terms which aid
retrieval, are promoted. Then, we evolve a local weighting
using Tables 2 and 3 while keeping the previously evolved
global weight constant. The full evolved term-weighting
scheme can then be identified as follows:

evolt(di, q) =
�

t∈q∩d

(lwt × gwt × qrtf) (5)

where qrtf is the raw term frequency in the query as used
in the benchmark schemes. The best evolved solutions pre-
sented in the results section in this paper are simplified and
re-written to aid the readability and analysis of the weight-
ing schemes. However, the weighting schemes presented are
functionally equivalent to those output by the GP process.

5. EXPERIMENTAL RESULTS
The first experiment evolves global schemes and an analy-

sis of the best performing scheme is presented. The second
experiment evolves local schemes while keeping the global
scheme constant and further analysis is presented.

5.1 Global Schemes
The following is the best global scheme evolved after 4

runs of the GP using Tables 1 and 3 as our terminal and
function set:

gwt = log(
cf

df
) × �N

df
× (

1

df
+ 1) (6)

Table 6: % MAP for idf and gwt

Collection Topics idf gwt %increase

TRAIN’88 0-63 19.22 22.10 14.98
OHSU’88 0-63 25.89 27.85 07.57
OHSU’89 0-63 25.22 27.63 09.55
OHSU’90-91 0-63 21.72 25.03 15.23
LATIMES 301-350 (short) 17.91 18.90 05.53

301-350 (med) 19.04 23.49 23.37
301-350 (long) 13.79 24.78 79.64

FBIS 351-400 (short) 11.25 11.77 04.62
351-400 (med) 10.42 14.55 39.63
351-400 (long) 06.97 14.08 102.01

We can see from Table 6 that the MAP of the gwt weight-
ing is higher than that of idf on the training collection and
also on all of the collections not included in training. These
increases are in the range of about 0.5% to 11% MAP. It
is also worth noting that the size of the training collection
is significantly large enough to allow us to learn a general
scheme. Figure 3 shows an average precision histograms
for each query for the OHSU’89 collection. We found that
although overall mean average precision increased, certain
queries in particular performed worse. An example of this
can be seen in Figure 3 for the OHSU’89 collection. Many of
these poor performing queries (query 12 in particular) con-
tain terms whose collection frequency is equal to the doc-
ument frequency (cf=df) and whose concentration is low.
These terms are assigned a zero weighting (effectively be-
ing eliminated) because of the log(cf/df) part of the gwt

scheme.

Figure 3: AP Histogram for gwt vs idf for each query

To ammend this weakness in the scheme, we evolved a
further factor (C1) using a population of 100 for 50 genera-
tions, using Tables 1 and 3, dependent on the gwt weight so

that certain terms would not be asssigned a weight of zero.
The following formula shows how the evolved C1 factor fits
into the evolved global weighting:

gw2t = log(
cf + C1

df
) × �N

df
× (

1

df
+ 1) (7)

C1 =
0.5�√

cf
=

0.5

cf
1

4

(8)

In Table 7, we see that the new global evolved scheme
(gw2t) is equal to or better than the original evolved gwt

scheme in terms of mean average precision on many of the
collections. It is worth mentioning that the reason certain
low concentration terms are assigned a zero weight in the
original scheme is because they are of little benefit in the
training set. However, as seen on the validation test col-
lections assigning them some weight is beneficial for certain
queries as the MAP increases again on some collections, al-
though often only slightly. Query 12 from OHSU’89 (Fig-
ure 3) performs similarly to idf after the modification and
is responsible for the larger increase on that collection. It
would seem that in general these terms are of little benefit
as the MAP does not rise significantly. However, completely
eliminatimg them can lead to certain documents being left
irretrievable.

Table 7: % MAP for idf and gw2t

Collection Topics idf gw2t %increase

TRAIN’88 0-63 19.22 22.28 15.92
OHSU’88 0-63 25.89 28.59 10.43
OHSU’89 0-63 25.22 29.23 15.78
OHSU’90-91 0-63 21.72 25.03 15.23
LATIMES 301-350 (short) 17.91 19.05 06.37

301-350 (med) 19.04 23.31 22.43
301-350 (long) 13.79 24.24 75.78

FBIS 351-400 (short) 11.25 11.73 04.26
351-400 (med) 10.42 14.56 39.73
351-400 (long) 06.97 14.09 103.19

5.1.1 Global Scheme Analysis
The global scheme increases mean average precision over

the idf measure because the cf/df part of the global weight-
ing (5) can be viewed as the average within-document fre-
quency and has previously been used by Kwok [11] and
Pirkola [14]. It is interesting that this measure has been
found independently by evolutionary techniques. This mea-
sure (or a slight variation of it as in gw2t) will increase the
average precision in a global context as we have a rough
estimate as to how many times a term will appear in the
documents in which that term appears. It is important to
note that the cf measure has information not available from
other measures and can lead to re-ordering of documents.
Figure 4 shows the terms in the OHSU’88 collection placed
in rank order and the idf of each term assigned. Figure 5
shows the terms in the OHSU’88 collection placed in rank
order and the gw2t weighting (6) applied.

Terms of a low concentration (i.e. where cf=df) are
assigned the lowest weight for any specific document fre-
quency. This scheme weights terms that tend to be concen-
trated higher than those that tend to be more dilute. It

has previously been shown on small collections that term-
weighting schemes that contain the cf measure can achieve
a higher average precision than those that do not contain it
[1]. Traditional tf-idf type schemes do not have any mea-
sure of the concentration of a term because within-document
term-frequencies cannot change the global weight of a term.
If a term tends to occur many times in a document, it is
likely that it describes some aspect of that document. In a
tf-idf type scheme, the fact that a term has described an-
other document is not used to increase the weight of that
term in other documents.

Figure 4: idf for terms in Rank order (OSHU’88)

Figure 5: gw2t for terms in Rank order (OSHU’88)

5.2 Local Schemes
The local scheme identified (9) is the best local scheme

found on the training collection after 4 runs of the GP using
tables 2 and 3 as the terminal and function set. This local
weight is evolved dependent on the global scheme (gw2t)
evolved in the previous experiment.

lwt =

�
(1 +

1

log(l)
) × (1 +

log(rtf)

log(l)
) (9)

From table 8 we can see that the complete evolved solution
(evolt) has a higher MAP than that of BM25 which ranges
from 1.4% to 2.2% on the OHSUMED subset collections not

included in training. The FBIS collection shows a large de-
crease in MAP when used with medium and long queries.
The MAP on the LATIMES collection shows very little im-
provement using the evolt weighting. The main difference
between the OHSUMED type collections and the FBIS and
LATIMES collections is that the document lengths of the
latter are significantly longer. As the local weighting is
evolved on the OHSUMED data it would seem that the
document normalisation learned is not generalisable for all
document lengths. We will investigate whether this is true
in the next section.

Table 8: % MAP for BM25k1=1.2 and evolt

Collection Topics BM25 evolt %increase

TRAIN’88 0-63 23.25 25.28 08.73
OHSU’88 0-63 32.79 33.90 03.38
OHSU’89 0-63 30.69 32.70 06.54
OHSU’90-91 0-63 28.08 29.81 06.16
LATIMES 301-350 (short) 24.18 24.67 02.02

301-350 (med) 25.61 25.82 00.82
301-350 (long) 25.82 26.86 04.02

FBIS 351-400 (short) 17.55 20.96 19.43
351-400 (med) 19.53 18.75 -03.99
351-400 (long) 21.84 17.09 -21.75

5.2.1 Term-Frequency Analysis
As the local scheme evolved (lwt) contains only term-

influence and normalisation parameters like those that al-
ready appear in the Okapi-tf scheme and in order to verify
that the document normalisation of the evolved local scheme
can be improved, we attempt to tune the term-frequency in-
fluence of Okapi-tf scheme so that it is similar to our lwt

scheme and simply use the default Okapi-tf document nor-
malisation aspect.

For the analysis of the term-frequency influence in this
section, we assume an average length document (i.e. dl =
dlavg). To compare Okapi-tf to other local weighting for-
mula in terms of term-frequency influence, it is neccessary
to calculate the relative increase in weight as the raw term-
frequency increases. We calculate the relative increase in
weight using the actual increase in weight seen as the term-
frequency increases by 1, divided by the previous weight.

∆w(rtf) =
w(rtf) − w(rtf − 1)

w(rtf − 1)
(10)

where rtf ≥ 2 and ∆w(rtf) is the relative change in
weight from w(rtf−1). Figure 6 shows this relative increase
in weight given to higher term frequencies. The relative
term-frequency influence decreases as the term-frequency in-
creases for all schemes as expected. We can see in this dia-
gram that a value of 0.2 for k1 in Okapi-tf closely relates to
the term-frequency influence of the evolved scheme.

To empirically test the term-frequency influence we com-
bine our gw2t evolved weight with Okapi-tf when k1=0.2
in place of the lwt scheme. We will call this combination
scheme ok-gw2t. Table 9 shows the MAP for the ok-gw2t

weighting scheme. We can see that the ok-gw2t weighting
performs better than evolt on OHSU’89 and OHSU’90-91
and worse on OHSU’88. The differences between them are
small but are still higher than those of the original BM25

Figure 6: Relative increase in weight for lwt and
Okapi-tf when k1=1.2 and k1=0.2

scheme. However on the longer documents the MAP has
increased significantly on the medium and long queries.

Table 9: % MAP for BM25k1=1.2 and ok-gw2t

Collection Topics BM25 ok-gw2t %increase

TRAIN’88 0-63 23.25 25.14 08.12
OHSU’88 0-63 32.79 34.26 04.48
OHSU’89 0-63 30.69 33.56 09.35
OHSU’90-91 0-63 28.08 30.43 08.36
LATIMES 301-350 (short) 24.18 25.24 04.38

301-350 (med) 25.61 29.68 15.89
301-350 (long) 25.82 30.60 18.51

FBIS 351-400 (short) 17.55 19.29 09.91
351-400 (med) 19.53 22.02 12.75
351-400 (long) 21.84 25.70 17.67

The results suggest that Okapi-tf can be tuned to interact
with the evolved global weighting (gw2t). The reason that
a lessening of the term-frequency influence of the Okapi-
tf scheme seems to be sucessful when combined with the
gw2t evolved weighting is due to the fact that the collec-
tion frequency (cf) appears in the global weighting. As
a result, certain frequency information is already used in
a global context (albeit often a rough estimation). This
collection frequency information is an accurate portrayal of
the within-document term frequency at low document fre-
quencies. As some average frequency information is avail-
able prior to developing a within-document weighting, the
weight assigned to within-document term frequencies should
be reduced. The best scheme identified is a combination of
Okapi-tf and gw2t.

6. CONCLUSIONS
We have shown that weighting schemes that have new

properties can be found using genetic programming (gw2t)
as well as weighting scheme which have similar properties to
that which already exist (lwt). The most effective scheme
identified is a combination of Okapi-tf and our evolved global
scheme. The increase in mean average precision is also con-
sistent over the various collections tested to date.

For future work we will investigate evolving query expan-

sion schemes using genetic programming. We propose using
genetic programming to find and weight expansion terms in
both local and global query expansion frameworks. For ex-
ample in local expansion techniques, a number of top ranked
documents are deemed relevant. Using genetic programming
we can use the characteristics of a term in these top ranked
documents and the characteristics of the term in the entire
collection to evolve a selection value for potential expansion
terms. These terms can then be added to the original query
with a weight based on their selection value. This process
can be used to find good term selection schemes and also
provide a correct weight for the expansion term automati-
cally.

7. ACKNOWLEDGMENTS
This work is being supported by IRCSET (the Irish Re-

search Council for Science, Engineering and Technology) un-
der the Embark Initiative.

8. REFERENCES
[1] Ronan Cummins and Colm O’Riordan. Using genetic

programming to evolve weighting schemes for the
vector space model of information retrieval. In
Maarten Keijzer, editor, Late Breaking Papers at the
2004 Genetic and Evolutionary Computation
Conference, Seattle, Washington, USA, 26 July 2004.

[2] Charles Darwin. The Origin of the Species by means
of Natural Selection, or The Preservation of Favoured
Races in the Struggle for Life. First edition, 1859.

[3] Weiguo Fan, Michael D. Gordon, and Praveen Pathak.
A generic ranking function discovery framework by
genetic programming for information retrieval.
Information Processing & Management, 2004.

[4] Weiguo Fan, Michael D. Gordon, Praveen Pathak,
Wensi Xi, and Edward A. Fox. Ranking function
optimization for effective web search by genetic
programming: An empirical study. In Proceedings of
the Proceedings of the 37th Annual Hawaii
International Conference on System Sciences
(HICSS’04) - Track 4, page 40105. IEEE Computer
Society, 2004.

[5] Weiguo Fan, Ming Luo, Li Wang, Wensi Xi, and
Edward A. Fox. Tuning before feedback: combining
ranking discovery and blind feedback for robust
retrieval. In Proceedings of the 27th annual
international conference on Research and development
in information retrieval, pages 138–145. ACM Press,
2004.

[6] M. Gordon. Probabilistic and genetic algorithms in
document retrieval. Commun. ACM,
31(10):1208–1218, 1988.

[7] W.R. Greiff. A theory of term weighting based on
exploratory data analysis. In Proceedings of the 21st
International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR
’98), Melbourne, Australia, August 1998.

[8] William Hersh, Chris Buckley, T. J. Leone, and David
Hickam. Ohsumed: an interactive retrieval evaluation
and new large test collection for research. In
Proceedings of the 17th annual international ACM
SIGIR conference on Research and development in

information retrieval, pages 192–201. Springer-Verlag
New York, Inc., 1994.

[9] J.T. Horng and C.C Yeh. Applying genetic algorithms
to query optimization in document retrieval.
Information Processing & Management,
36(5):737–759, 2000.

[10] John R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA, 1992.

[11] K. L. Kwok. A new method of weighting query terms
for ad-hoc retrieval. In Proceedings of the 19th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 187–195.
ACM Press, 1996.

[12] H.P. Luhn. The automatic creation of literature
abstracts. IBM Journal of Research and Development,
pages 159–165, 1958.

[13] N. Oren. Re-examining tf.idf based information
retrieval with genetic programming. Proceedings of
SAICSIT, 2002.

[14] A. Pirkola and K. Jarvelin. Employing the resolution
power of search keys. J. Am. Soc. Inf. Sci. Technol.,
52(7):575–583, 2001.

[15] M.F. Porter. An algorithm for suffix stripping.
Program, 14(3):130–137, 1980.

[16] Stephen E. Robertson, Steve Walker, Micheline
Hancock-Beaulieu, Aarron Gull, and Marianna Lau.
Okapi at TREC-3. In In D. K. Harman, editor, The
Third Text REtrieval Conference (TREC-3) NIST,
1995.

[17] G. Salton, A. Wong, and C. S. Yang. A vector space
model for automatic indexing. Commun. ACM,
18(11):613–620, 1975.

[18] G. Salton and C. S. Yang. On the specification of term
values in automatic indexing. Journal of
Documentation, 29:351–372, 1973.

[19] A. Singhal. Modern information retrieval: A brief
overview. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering,
24(4):35–43, 2001.

[20] Andrew Trotman. An artificial intelligence approach
to information retrieval (abstract only). In SIGIR,
page 603, 2004.

[21] Andrew Trotman. Learning to rank. Information
Retrieval, 8:359 – 381, 2005.

[22] Dana Vrajitoru. Crossover improvement for the
genetic algorithm in information retrieval. Inf.
Process. Manage., 34(4):405–415, 1998.

[23] Steve Walker, Stephen E. Robertson, Mohand
Boughanem, Gareth J. F. Jones, and Karen Sparck
Jones. Okapi at trec-6 automatic ad hoc, vlc, routing,
filtering and qsdr. In E. M. Voorhees and D. K.
Harman, editors, Proceedings of the 6th Text REtrieval
Conference (TREC-6), pages 125–136. NIST Special
Publication 500-240, 1997.

[24] Jing-Jye Yang and Robert Korfhage. Query
optimization in information retrieval using genetic
algorithms. In Proceedings of the 5th International
Conference on Genetic Algorithms, pages 603–613.
Morgan Kaufmann Publishers Inc., 1993.

